Discrete integrable equations over finite fields
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Discrete integrable equations over finite fields are investigated. The indeterminacy of the equation is resolved by treating it over a field of rational functions instead of the finite field itself. The main discussion concerns a generalized discrete KdV equation related to a Yang–Baxter map. Explicit forms of soliton solutions and their periods over finite fields are obtained. Relation to the singularity confinement method is also discussed.
Keywords: integrable system, discrete KdV equation, finite field, cellular automaton.
@article{SIGMA_2012_8_a53,
     author = {Masataka Kanki and Jun Mada and Tetsuji Tokihiro},
     title = {Discrete integrable equations over finite fields},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a53/}
}
TY  - JOUR
AU  - Masataka Kanki
AU  - Jun Mada
AU  - Tetsuji Tokihiro
TI  - Discrete integrable equations over finite fields
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a53/
LA  - en
ID  - SIGMA_2012_8_a53
ER  - 
%0 Journal Article
%A Masataka Kanki
%A Jun Mada
%A Tetsuji Tokihiro
%T Discrete integrable equations over finite fields
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a53/
%G en
%F SIGMA_2012_8_a53
Masataka Kanki; Jun Mada; Tetsuji Tokihiro. Discrete integrable equations over finite fields. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a53/

[1] Białecki M., Doliwa A., “Discrete Kadomtsev–Petviashvili and Korteweg–de Vries equations over finite fields”, Theoret. and Math. Phys., 137 (2003), 1412–1418 ; arXiv: nlin.SI/0302064 | DOI | MR | Zbl

[2] Białecki M., Nimmo J.J.C., “On pattern structures of the $N$-soliton solution of the discrete KP equation over a finite field”, J. Phys. A: Math. Theor., 40 (2007), 949–959 ; arXiv: nlin.SI/0608041 | DOI | MR | Zbl

[3] Date E., Jinbo M., Miwa T., “Method for generating discrete soliton equation. II”, J. Phys. Soc. Japan, 51 (1982), 4125–4131 | DOI | MR

[4] Doliwa A., Białecki M., Klimczewski P., “The Hirota equation over finite fields: algebro-geometric approach and multisoliton solutions”, J. Phys. A: Math. Gen., 36 (2003), 4827–4839 ; arXiv: nlin.SI/0211043 | DOI | MR | Zbl

[5] Grammaticos B., Ramani A., Papageorgiou V., “Do integrable mappings have the Painlevé property?”, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl

[6] Kakei S., Nimmo J.J.C., Willox R., “Yang–Baxter maps and the discrete KP hierarchy”, Glasg. Math. J., 51 (2009), 107–119 | DOI | MR

[7] Nijhoff F.W., Papageorgiou V.G., “Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation”, Phys. Lett. A, 153 (1991), 337–344 | DOI | MR

[8] Okamoto K., “Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{\rm VI}$”, Ann. Mat. Pura Appl. (4), 146 (1987), 337–381 | DOI | MR | Zbl

[9] Okamoto K., “Studies on the Painlevé equations. II. Fifth Painlevé equation $P_{\rm V}$”, Japan. J. Math. (N.S.), 13 (1987), 47–76 | MR | Zbl

[10] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{\rm II}$ and $P_{\rm IV}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl

[11] Okamoto K., “Studies on the Painlevé equations. IV. Third Painlevé equation $P_{\rm III}$”, Funkcial. Ekvac., 30 (1987), 305–332 | MR | Zbl

[12] Papageorgiou V.G., Tongas A.G., Veselov A.P., “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47 (2006), 083502, 16 pp. ; arXiv: math.QA/0605206 | DOI | MR | Zbl

[13] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl

[14] Ramani A., Grammaticos B., Satsuma J., “Integrability of multidimensional discrete systems”, Phys. Lett. A, 169 (1992), 323–328 | DOI | MR

[15] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[16] Tamizhmani K.M., Private communication, 2012

[17] Wolfram S., “Statistical mechanics of cellular automata”, Rev. Modern Phys., 55 (1983), 601–644 | DOI | MR | Zbl