Examples of matrix factorizations from SYZ
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find matrix factorization corresponding to an anti-diagonal in $\mathbb CP^1 \times \mathbb CP^1$, and circle fibers in weighted projective lines using the idea of Chan and Leung of Strominger–Yau–Zaslow transformations. For the tear drop orbifolds, we apply this idea to find matrix factorizations for two types of potential, the usual Hori–Vafa potential or the bulk deformed (orbi)-potential. We also show that the direct sum of anti-diagonal with its shift, is equivalent to the direct sum of central torus fibers with holonomy $(1,-1)$ and $(-1,1)$ in the Fukaya category of $\mathbb CP^1 \times \mathbb CP^1$, which was predicted by Kapustin and Li from B-model calculations.
Keywords: matrix factorization, Fukaya category, mirror symmetry, Lagrangian Floer theory.
@article{SIGMA_2012_8_a52,
     author = {Cheol-Hyun Cho and Hansol Hong and Sangwook Lee},
     title = {Examples of matrix factorizations from {SYZ}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a52/}
}
TY  - JOUR
AU  - Cheol-Hyun Cho
AU  - Hansol Hong
AU  - Sangwook Lee
TI  - Examples of matrix factorizations from SYZ
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a52/
LA  - en
ID  - SIGMA_2012_8_a52
ER  - 
%0 Journal Article
%A Cheol-Hyun Cho
%A Hansol Hong
%A Sangwook Lee
%T Examples of matrix factorizations from SYZ
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a52/
%G en
%F SIGMA_2012_8_a52
Cheol-Hyun Cho; Hansol Hong; Sangwook Lee. Examples of matrix factorizations from SYZ. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a52/

[1] Alston G., Floer cohomology of real Lagrangians in the Fermat quintic threefold, arXiv: 1010.4073 | MR

[2] Ashok S.K., Dell'Aquila E., Diaconescu D.E., “Fractional branes in Landau–Ginzburg orbifolds”, Adv. Theor. Math. Phys., 8 (2004), 461–513 ; arXiv: hep-th/0401135 | MR | Zbl

[3] Auroux D., “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 ; arXiv: 0706.3207 | MR | Zbl

[4] Chan K., Leung N.C., “Matrix factorizations from SYZ transformations”, Advances in Geometric Analysis, Adv. Lect. Math., 21, International Press, Somerville, MA, 2011, 203–224; arXiv: 1006.3832

[5] Chan K., Leung N.C., “Mirror symmetry for toric Fano manifolds via SYZ transformations”, Adv. Math., 223 (2010), 797–839 ; arXiv: 0801.2830 | DOI | MR | Zbl

[6] Cho C.-H., Constant triangles in Fukaya category, in preparation

[7] Cho C.-H., “Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus”, Int. Math. Res. Not., 2004:35 (2004), 1803–1843 ; arXiv: math.SG/0308224 | DOI | MR | Zbl

[8] Cho C.-H., “Non-displaceable Lagrangian submanifolds and Floer cohomology with non-unitary line bundle”, J. Geom. Phys., 58 (2008), 1465–1476 ; arXiv: 0710.5454 | DOI | MR | Zbl

[9] Cho C.-H., Oh Y.-G., “Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds”, Asian J. Math., 10 (2006), 773–814 ; arXiv: math.SG/0308225 | MR | Zbl

[10] Cho C.-H., Poddar M., Holomorphic orbi-discs and Lagrangian Floer cohomology for toric orbifolds, arXiv: 1206.3994

[11] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Lagrangian Floer theory on compact toric manifolds. I”, Duke Math. J., 151 (2010), 23–174 ; arXiv: 0802.1703 | DOI | MR

[12] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Lagrangian Floer theory on compact toric manifolds. II. Bulk deformations”, Selecta Math. (N.S.), 17 (2011), 609–711 ; arXiv: 0810.5654 | DOI | MR | Zbl

[13] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, AMS/IP Studies in Advanced Mathematics, 46, Amer. Math. Soc., Providence, RI, 2009

[14] Gross M., “The Strominger–Yau–Zaslow conjecture: from torus fibrations to degenerations”, Algebraic Geometry – Seattle 2005, Part 1, Proc. Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009, 149–192 | MR | Zbl

[15] Kapustin A., Li Y., “D-branes in Landau–Ginzburg models and algebraic geometry”, J. High Energy Phys., 2003:12 (2003), 005, 44 pp. ; arXiv: hep-th/0210296 | DOI | MR

[16] Kwon D., Oh Y.-G., “Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition”, Comm. Anal. Geom., 8 (2000), 31–82 | MR | Zbl

[17] Oh Y.-G., “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I”, Comm. Pure Appl. Math., 46 (1993), 949–993 | DOI | MR

[18] Oh Y.-G., “Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings”, Int. Math. Res. Not., 1996:7 (1996), 305–346 | DOI | MR | Zbl

[19] Orlov D.O., “Triangulated categories of singularities and D-branes in Landau–Ginzburg models”, Tr. Mat. Inst. Steklova, 246 (2004), 240–262 | MR | Zbl

[20] Seidel P., Fukaya categories and Picard–Lefschetz theory, Zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008 | DOI | MR | Zbl

[21] Strominger A., Yau S.T., Zaslow E., “Mirror symmetry is $T$-duality”, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, 1999), AMS/IP Studies in Advanced Mathematics, 23, eds. C. Vafa, S.T. Yau, Amer. Math. Soc., Providence, RI, 2001, 275–295 | MR