@article{SIGMA_2012_8_a52,
author = {Cheol-Hyun Cho and Hansol Hong and Sangwook Lee},
title = {Examples of matrix factorizations from {SYZ}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a52/}
}
Cheol-Hyun Cho; Hansol Hong; Sangwook Lee. Examples of matrix factorizations from SYZ. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a52/
[1] Alston G., Floer cohomology of real Lagrangians in the Fermat quintic threefold, arXiv: 1010.4073 | MR
[2] Ashok S.K., Dell'Aquila E., Diaconescu D.E., “Fractional branes in Landau–Ginzburg orbifolds”, Adv. Theor. Math. Phys., 8 (2004), 461–513 ; arXiv: hep-th/0401135 | MR | Zbl
[3] Auroux D., “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 ; arXiv: 0706.3207 | MR | Zbl
[4] Chan K., Leung N.C., “Matrix factorizations from SYZ transformations”, Advances in Geometric Analysis, Adv. Lect. Math., 21, International Press, Somerville, MA, 2011, 203–224; arXiv: 1006.3832
[5] Chan K., Leung N.C., “Mirror symmetry for toric Fano manifolds via SYZ transformations”, Adv. Math., 223 (2010), 797–839 ; arXiv: 0801.2830 | DOI | MR | Zbl
[6] Cho C.-H., Constant triangles in Fukaya category, in preparation
[7] Cho C.-H., “Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus”, Int. Math. Res. Not., 2004:35 (2004), 1803–1843 ; arXiv: math.SG/0308224 | DOI | MR | Zbl
[8] Cho C.-H., “Non-displaceable Lagrangian submanifolds and Floer cohomology with non-unitary line bundle”, J. Geom. Phys., 58 (2008), 1465–1476 ; arXiv: 0710.5454 | DOI | MR | Zbl
[9] Cho C.-H., Oh Y.-G., “Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds”, Asian J. Math., 10 (2006), 773–814 ; arXiv: math.SG/0308225 | MR | Zbl
[10] Cho C.-H., Poddar M., Holomorphic orbi-discs and Lagrangian Floer cohomology for toric orbifolds, arXiv: 1206.3994
[11] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Lagrangian Floer theory on compact toric manifolds. I”, Duke Math. J., 151 (2010), 23–174 ; arXiv: 0802.1703 | DOI | MR
[12] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Lagrangian Floer theory on compact toric manifolds. II. Bulk deformations”, Selecta Math. (N.S.), 17 (2011), 609–711 ; arXiv: 0810.5654 | DOI | MR | Zbl
[13] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, AMS/IP Studies in Advanced Mathematics, 46, Amer. Math. Soc., Providence, RI, 2009
[14] Gross M., “The Strominger–Yau–Zaslow conjecture: from torus fibrations to degenerations”, Algebraic Geometry – Seattle 2005, Part 1, Proc. Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009, 149–192 | MR | Zbl
[15] Kapustin A., Li Y., “D-branes in Landau–Ginzburg models and algebraic geometry”, J. High Energy Phys., 2003:12 (2003), 005, 44 pp. ; arXiv: hep-th/0210296 | DOI | MR
[16] Kwon D., Oh Y.-G., “Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition”, Comm. Anal. Geom., 8 (2000), 31–82 | MR | Zbl
[17] Oh Y.-G., “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I”, Comm. Pure Appl. Math., 46 (1993), 949–993 | DOI | MR
[18] Oh Y.-G., “Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings”, Int. Math. Res. Not., 1996:7 (1996), 305–346 | DOI | MR | Zbl
[19] Orlov D.O., “Triangulated categories of singularities and D-branes in Landau–Ginzburg models”, Tr. Mat. Inst. Steklova, 246 (2004), 240–262 | MR | Zbl
[20] Seidel P., Fukaya categories and Picard–Lefschetz theory, Zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008 | DOI | MR | Zbl
[21] Strominger A., Yau S.T., Zaslow E., “Mirror symmetry is $T$-duality”, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, 1999), AMS/IP Studies in Advanced Mathematics, 23, eds. C. Vafa, S.T. Yau, Amer. Math. Soc., Providence, RI, 2001, 275–295 | MR