@article{SIGMA_2012_8_a51,
author = {Ma{\"\i}t\'e Dupuis and James P. Ryan and Simone Speziale},
title = {Discrete gravity models and {Loop} {Quantum} {Gravity:} a short review},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a51/}
}
TY - JOUR AU - Maïté Dupuis AU - James P. Ryan AU - Simone Speziale TI - Discrete gravity models and Loop Quantum Gravity: a short review JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a51/ LA - en ID - SIGMA_2012_8_a51 ER -
Maïté Dupuis; James P. Ryan; Simone Speziale. Discrete gravity models and Loop Quantum Gravity: a short review. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a51/
[1] Alesci E., Rovelli C., “Complete LQG propagator: difficulties with the Barrett–Crane vertex”, Phys. Rev. D, 76 (2007), 104012, 22 pp. ; arXiv: 0708.0883 | DOI
[2] Alesci E., Rovelli C., “Complete LQG propagator. II. Asymptotic behavior of the vertex”, Phys. Rev. D, 77 (2008), 044024, 11 pp. ; arXiv: 0711.1284 | DOI
[3] Alexandrov S., Degenerate Plebanski sector and its spin foam quantization, arXiv: 1202.5039
[4] Alexandrov S., “New vertices and canonical quantization”, Phys. Rev. D, 82 (2010), 024024, 9 pp. ; arXiv: 1004.2260 | DOI | MR
[5] Alexandrov S., “$\mathrm{SO}(4,\mathbf C)$-covariant Ashtekar–Barbero gravity and the Immirzi parameter”, Classical Quantum Gravity, 17 (2000), 4255–4268 ; arXiv: gr-qc/0005085 | DOI | MR | Zbl
[6] Alexandrov S., “The Immirzi parameter and fermions with non-minimal coupling”, Classical Quantum Gravity, 25 (2008), 145012, 4 pp. ; arXiv: 0802.1221 | DOI | MR | Zbl
[7] Alexandrov S., Buffenoir E., Roche P., “Plebanski theory and covariant canonical formulation”, Classical Quantum Gravity, 24 (2007), 2809–2824 ; arXiv: gr-qc/0612071 | DOI | MR | Zbl
[8] Alexandrov S., Geiller M., Noui K., Spin foams and canonical quantization, arXiv: 1112.1961
[9] Alexandrov S., Livine E.R., “$\mathrm{SU}(2)$ loop quantum gravity seen from covariant theory”, Phys. Rev. D, 67 (2003), 044009, 15 pp. ; arXiv: gr-qc/0209105 | DOI | MR
[10] Ambjorn J., Jurkiewicz J., Loll R., “Lattice quantum gravity – an update”, PoS Proc. Sci., 2010, PoS(LATTICE2010), 014, 14 pp.; arXiv: 1105.5582
[11] Ashtekar A., Corichi A., Zapata J.A., “Quantum theory of geometry. III. Non-commutativity of Riemannian structures”, Classical Quantum Gravity, 15 (1998), 2955–2972 ; arXiv: gr-qc/9806041 | DOI | MR | Zbl
[12] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152 ; arXiv: gr-qc/0404018 | DOI | MR | Zbl
[13] Baez J.C., Barrett J.W., “The quantum tetrahedron in 3 and 4 dimensions”, Adv. Theor. Math. Phys., 3 (1999), 815–850, arXiv: gr-qc/9903060 | MR | Zbl
[14] Bahr B., Dittrich B., “Broken gauge symmetries and constraints in Regge calculus”, Classical Quantum Gravity, 26 (2009), 225011, 34 pp. ; arXiv: 0905.1670 | DOI | MR | Zbl
[15] Bahr B., Dittrich B., “Improved and perfect actions in discrete gravity”, Phys. Rev. D, 80 (2009), 124030, 15 pp. ; arXiv: 0907.4323 | DOI
[16] Bahr B., Dittrich B., He S., “Coarse graining free theories with gauge symmetries: the linearized case”, New J. Phys., 13 (2011), 045009, 34 pp. ; arXiv: 1011.3667 | DOI
[17] Baratin A., Dittrich B., Oriti D., Tambornino J., “Non-commutative flux representation for loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 175011, 19 pp. ; arXiv: 1004.3450 | DOI | MR | Zbl
[18] Baratin A., Oriti D., “Group field theory and simplicial gravity path integrals: a model for Holst–Plebanski gravity”, Phys. Rev. D, 85 (2012), 044003, 15 pp. ; arXiv: 1111.5842 | DOI
[19] Baratin A., Oriti D., “Group field theory with noncommutative metric variables”, Phys. Rev. Lett., 105 (2010), 221302, 4 pp. ; arXiv: 1002.4723 | DOI | MR
[20] Barbero G. J.F., “Real Ashtekar variables for Lorentzian signature space-times”, Phys. Rev. D, 51 (1995), 5507–5510 ; arXiv: gr-qc/9410014 | DOI | MR
[21] Barrett J.W., Crane L., “A Lorentzian signature model for quantum general relativity”, Classical Quantum Gravity, 17 (2000), 3101–3118 ; arXiv: gr-qc/9904025 | DOI | MR | Zbl
[22] Barrett J.W., Crane L., “Relativistic spin networks and quantum gravity”, J. Math. Phys., 39 (1998), 3296–3302 ; arXiv: gr-qc/9709028 | DOI | MR | Zbl
[23] Barrett J.W., Dowdall R.J., Fairbairn W.J., Hellmann F., Pereira R., “Lorentzian spin foam amplitudes: graphical calculus and asymptotics”, Classical Quantum Gravity, 27 (2010), 165009, 34 pp. ; arXiv: 0907.2440 | DOI | MR | Zbl
[24] Barrett J.W., Roček M., Williams R.M., “A note on area variables in Regge calculus”, Classical Quantum Gravity, 16 (1999), 1373–1376 ; arXiv: gr-qc/9710056 | DOI | MR | Zbl
[25] Benedetti D., Speziale S., “Perturbative quantum gravity with the Immirzi parameter”, J. High Energy Phys., 2011:6 (2011), 107, 31 pp. ; arXiv: 1104.4028 | DOI | MR
[26] Benedetti D., Speziale S., Perturbative running of the Immirzi parameter, arXiv: 1111.0884
[27] Bianchi E., “Black hole entropy, loop gravity, and polymer physics”, Classical Quantum Gravity, 28 (2011), 114006, 12 pp. ; arXiv: 1011.5628 | DOI | MR | Zbl
[28] Bianchi E., Loop quantum gravity a la Aharonov–Bohm, arXiv: 0907.4388
[29] Bianchi E., Doná P., Speziale S., “Polyhedra in loop quantum gravity”, Phys. Rev. D, 83 (2011), 044035, 17 pp. ; arXiv: 1009.3402 | DOI
[30] Bianchi E., Krajewski T., Rovelli C., Vidotto F., “Cosmological constant in spinfoam cosmology”, Phys. Rev. D, 83 (2011), 104015, 4 pp. ; arXiv: 1101.4049 | DOI
[31] Bianchi E., Magliaro E., Perini C., “LQG propagator from the new spin foams”, Nuclear Phys. B, 822 (2009), 245–269 ; arXiv: 0905.4082 | DOI | Zbl
[32] Bianchi E., Modesto L., Rovelli C., Speziale S., “Graviton propagator in loop quantum gravity”, Classical Quantum Gravity, 23 (2006), 6989–7028 ; arXiv: gr-qc/0604044 | DOI | MR | Zbl
[33] Bonzom V., “Spin foam models and the Wheeler–DeWitt equation for the quantum 4-simplex”, Phys. Rev. D, 84 (2011), 024009, 13 pp. ; arXiv: 1101.1615 | DOI
[34] Bonzom V., “Spin foam models for quantum gravity from lattice path integrals”, Phys. Rev. D, 80 (2009), 064028, 15 pp. ; arXiv: 0905.1501 | DOI | MR
[35] Bonzom V., Freidel L., “The Hamiltonian constraint in 3d Riemannian loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 195006, 24 pp. ; arXiv: 1101.3524 | DOI | MR | Zbl
[36] Bonzom V., Livine E.R., A new Hamiltonian for the topological BF phase with spinor networks, arXiv: 1110.3272
[37] Bonzom V., Livine E.R., “Lagrangian approach to the Barrett–Crane spin foam model”, Phys. Rev. D, 79 (2009), 064034, 23 pp. ; arXiv: 0812.3456 | DOI | MR
[38] Bonzom V., Livine E.R., Speziale S., “Recurrence relations for spin foam vertices”, Classical Quantum Gravity, 27 (2010), 125002, 32 pp. ; arXiv: 0911.2204 | DOI | MR | Zbl
[39] Borja E.F., Díaz-Polo J., Freidel L., Garay I., Livine E.R., New tools for loop quantum gravity with applications to a simple model, arXiv: 1201.5470
[40] Borja E.F., Díaz-Polo J., Garay I., $\mathrm U(N)$ and holomorphic methods for LQG and spin foams, arXiv: 1110.4578
[41] Borja E.F., Díaz-Polo J., Garay I., Livine E.R., “Dynamics for a 2-vertex quantum gravity model”, Classical Quantum Gravity, 27 (2010), 235010, 34 pp. ; arXiv: 1006.2451 | DOI | MR | Zbl
[42] Borja E.F., Freidel L., Garay I., Livine E.R., “$\mathrm U(N)$ tools for loop quantum gravity: the return of the spinor”, Classical Quantum Gravity, 28 (2011), 055005, 28 pp. ; arXiv: 1010.5451 | DOI | MR | Zbl
[43] Brewin L.C., Gentle A.P., “On the convergence of Regge calculus to general relativity”, Classical Quantum Gravity, 18 (2001), 517–525 ; arXiv: gr-qc/0006017 | DOI | MR | Zbl
[44] Buffenoir E., Henneaux M., Noui K., Roche P., “Hamiltonian analysis of Plebanski theory”, Classical Quantum Gravity, 21 (2004), 5203–5220 ; arXiv: gr-qc/0404041 | DOI | MR | Zbl
[45] Carfora M., Dappiaggi C., Marzuoli A., “The modular geometry of random Regge triangulations”, Classical Quantum Gravity, 19 (2002), 5195–5220 ; arXiv: gr-qc/0206077 | DOI | MR | Zbl
[46] Caselle M., D'Adda A., Magnea L., “Regge calculus as a local theory of the Poincaré group”, Phys. Lett. B, 232 (1989), 457–461 | DOI | MR
[47] Daum J.E., Reuter M., Renormalization group flow of the holst action, arXiv: 1012.4280
[48] Ding Y., Han M., Rovelli C., “Generalized spinfoams”, Phys. Rev. D, 83 (2011), 124020, 17 pp. ; arXiv: 1011.2149 | DOI
[49] Dittrich B., “Diffeomorphism symmetry in quantum gravity models”, Adv. Sci. Lett., 2 (2008), 151–163 ; arXiv: 0810.3594 | DOI
[50] Dittrich B., How to construct diffeomorphism symmetry on the lattice, arXiv: 1201.3840
[51] Dittrich B., Höhn P.A., “Canonical simplicial gravity”, Classical Quantum Gravity, 29 (2012), 115009, 52 pp. ; arXiv: 1108.1974 | DOI | Zbl
[52] Dittrich B., Höhn P.A., “From covariant to canonical formulations of discrete gravity”, Classical Quantum Gravity, 27 (2010), 155001, 37 pp. ; arXiv: 0912.1817 | DOI | MR | Zbl
[53] Dittrich B., Ryan J.P., “Phase space descriptions for simplicial 4D geometries”, Classical Quantum Gravity, 28 (2011), 065006, 34 pp. ; arXiv: 0807.2806 | DOI | MR | Zbl
[54] Dittrich B., Ryan J.P., “Simplicity in simplicial phase space”, Phys. Rev. D, 82 (2010), 064026, 19 pp. ; arXiv: 1006.4295 | DOI
[55] Dittrich B., Speziale S., “Area-angle variables for general relativity”, New J. Phys., 10 (2008), 083006, 12 pp. ; arXiv: 0802.0864 | DOI
[56] Dittrich B., Steinhaus S., “Path integral measure and triangulation independence in discrete gravity”, Phys. Rev. D, 85 (2012), 044032, 21 pp. ; arXiv: 1110.6866 | DOI
[57] Drummond I.T., “Regge–Palatini calculus”, Nuclear Phys. B, 273 (1986), 125–136 | DOI | MR
[58] Dupuis M., Freidel L., Livine E.R., Speziale S., “Holomorphic Lorentzian simplicity constraints”, J. Math. Phys., 53 (2012), 032502, 18 pp. ; arXiv: 1107.5274 | DOI
[59] Dupuis M., Livine E.R., “Holomorphic simplicity constraints for 4D Riemannian spinfoam models”, J. Phys. Conf. Ser., 360 (2012), 012046, 4 pp. ; arXiv: 1111.1125 | DOI
[60] Dupuis M., Livine E.R., “Holomorphic simplicity constraints for 4D spinfoam models”, Classical Quantum Gravity, 28 (2011), 215022, 32 pp. ; arXiv: 1104.3683 | DOI | MR | Zbl
[61] Dupuis M., Livine E.R., “Lifting SU(2) spin networks to projected spin networks”, Phys. Rev. D, 82 (2010), 064044, 11 pp. ; arXiv: 1008.4093 | DOI | MR
[62] Dupuis M., Livine E.R., “Revisiting the simplicity constraints and coherent intertwiners”, Classical Quantum Gravity, 28 (2011), 085001, 36 pp. ; arXiv: 1006.5666 | DOI | MR | Zbl
[63] Dupuis M., Speziale S., Tambornino J., Spinors and twistors in loop gravity and spin foams, arXiv: 1201.2120
[64] Engle J., A proposed proper EPRL vertex amplitude, arXiv: 1111.2865
[65] Engle J., Livine E., Pereira R., Rovelli C., “LQG vertex with finite Immirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149 ; arXiv: 0711.0146 | DOI | MR | Zbl
[66] Engle J., Pereira R., “Coherent states, constraint classes and area operators in the new spin-foam models”, Classical Quantum Gravity, 25 (2008), 105010, 21 pp. ; arXiv: 0710.5017 | DOI | MR | Zbl
[67] Engle J., Pereira R., Rovelli C., “Flipped spinfoam vertex and loop gravity”, Nuclear Phys. B, 798 (2008), 251–290 ; arXiv: 0708.1236 | DOI | MR | Zbl
[68] Engle J., Pereira R., Rovelli C., “Loop-quantum-gravity vertex amplitude”, Phys. Rev. Lett., 99 (2007), 161301, 4 pp. ; arXiv: 0705.2388 | DOI | MR | Zbl
[69] Freidel L., Geiller M., Ziprick J., Continuous formulation of the loop quantum gravity phase space, arXiv: 1110.4833
[70] Freidel L., Krasnov K., “A new spin foam model for 4D gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp. ; arXiv: 0708.1595 | DOI | MR | Zbl
[71] Freidel L., Minic D., Takeuchi T., “Quantum gravity, torsion, parity violation, and all that”, Phys. Rev. D, 72 (2005), 104002, 6 pp. ; arXiv: hep-th/0507253 | DOI | MR
[72] Freidel L., Speziale S., “From twistors to twisted geometries”, Phys. Rev. D, 82 (2010), 084041, 5 pp. ; arXiv: 1006.0199 | DOI
[73] Freidel L., Speziale S., “Twisted geometries: a geometric parametrisation of SU(2) phase space”, Phys. Rev. D, 82 (2010), 084040, 16 pp. ; arXiv: 1001.2748 | DOI
[74] Freidel L., Starodubtsev A., Quantum gravity in terms of topological observables, arXiv: hep-th/0501191
[75] Gambini R., Pullin J., “Classical and quantum general relativity: a new paradigm”, Gen. Relativity Gravitation, 37 (2005), 1689–1694 ; arXiv: gr-qc/0505052 | DOI | MR | Zbl
[76] Gambini R., Pullin J., “Consistent discretization and canonical, classical and quantum Regge calculus”, Internat. J. Modern Phys. D, 15 (2006), 1699–1706 ; arXiv: gr-qc/0511096 | DOI | MR | Zbl
[77] Geiller M., Lachièze-Rey M., Noui K., “A new look at Lorentz-covariant loop quantum gravity”, Phys. Rev. D, 84 (2011), 044002, 19 pp. ; arXiv: 1105.4194 | DOI
[78] Geiller M., Lachièze-Rey M., Noui K., Sardelli F., “A Lorentz-covariant connection for canonical gravity”, SIGMA, 7 (2011), 083, 10 pp. ; arXiv: 1103.4057 | DOI | MR | Zbl
[79] Geiller M., Noui K., “Testing the imposition of the spin foam simplicity constraints”, Classical Quantum Gravity, 29 (2012), 135008, 28 pp. ; arXiv: 1112.1965 | DOI | Zbl
[80] Hamber H.W., “Quantum gravity on the lattice”, Gen. Relativity Gravitation, 41 (2009), 817–876 ; arXiv: 0901.0964 | DOI | MR | Zbl
[81] Hamber H.W., Williams R.M., “Gauge invariance in simplicial gravity”, Nuclear Phys. B, 487 (1997), 345–408 ; arXiv: hep-th/9607153 | DOI | MR | Zbl
[82] Hamber H.W., Williams R.M., “On the measure in simplicial gravity”, Phys. Rev. D, 59 (1999), 064014, 8 pp. ; arXiv: hep-th/9708019 | DOI | MR
[83] Holm C., Hennig J.D., “Regge calculus with torsion”, Group Theoretical Methods in Physics (Moscow, 1990), Lecture Notes in Phys., 382, Springer, Berlin, 1991, 556–560 | DOI | MR
[84] Holst S., “Barbero's {H}amiltonian derived from a generalized Hilbert–Palatini action”, Phys. Rev. D, 53 (1996), 5966–5969 ; arXiv: gr-qc/9511026 | DOI | MR
[85] Immirzi G., “Quantizing Regge calculus”, Classical Quantum Gravity, 13 (1996), 2385–2393 ; arXiv: gr-qc/9512040 | DOI | MR | Zbl
[86] Immirzi G., “Quantum gravity and Regge calculus”, Nuclear Phys. B Proc. Suppl., 57 (1997), 65–72 ; arXiv: gr-qc/9701052 | DOI | MR | Zbl
[87] Immirzi G., “Real and complex connections for canonical gravity”, Classical Quantum Gravity, 14 (1997), L177–L181 ; arXiv: gr-qc/9612030 | DOI | MR | Zbl
[88] Immirzi G., “Regge calculus and Ashtekar variables”, Classical Quantum Gravity, 11 (1994), 1971–1979 ; arXiv: gr-qc/9402004 | DOI | MR
[89] Kamiński W., Kisielowski M., Lewandowski J., “Spin-foams for all loop quantum gravity”, Classical Quantum Gravity, 27 (2010), 095006, 24 pp. ; arXiv: 0909.0939 | DOI | MR | Zbl
[90] Khatsymovsky V., “Continuous time Regge gravity in the tetrad-connection variables”, Classical Quantum Gravity, 8 (1991), 1205–1216 | DOI | MR
[91] Livine E.R., “Projected spin networks for Lorentz connection: linking spin foams and loop gravity”, Classical Quantum Gravity, 19 (2002), 5525–5541 ; arXiv: gr-qc/0207084 | DOI | MR | Zbl
[92] Livine E.R., Speziale S., “Consistently solving the simplicity constraints for spinfoam quantum gravity”, Europhys. Lett., 81 (2008), 50004, 6 pp. ; arXiv: 0708.1915 | DOI
[93] Livine E.R., Speziale S., “New spinfoam vertex for quantum gravity”, Phys. Rev. D, 76 (2007), 084028, 14 pp. ; arXiv: 0705.0674 | DOI | MR
[94] Livine E.R., Speziale S., Tambornino J., “Twistor networks and covariant twisted geometries”, Phys. Rev. D, 85 (2012), 064002, 12 pp. ; arXiv: 1108.0369 | DOI
[95] Livine E.R., Tambornino J., “Spinor representation for loop quantum gravity”, J. Math. Phys., 53 (2012), 012503, 33 pp. ; arXiv: 1105.3385 | DOI | MR
[96] Magliaro E., Perini C., “Curvature in spinfoams”, Classical Quantum Gravity, 28 (2011), 145028, 11 pp. ; arXiv: 1011.5676 | DOI | MR | Zbl
[97] Mäkelä J., “Phase space coordinates and the Hamiltonian constraint of Regge calculus”, Phys. Rev. D, 49 (1994), 2882–2896 | DOI | MR
[98] Mäkelä J., Williams R.M., “Constraints on area variables in Regge calculus”, Classical Quantum Gravity, 18 (2001), L43–L47 ; arXiv: gr-qc/0011006 | DOI | MR
[99] Mercuri S., “Fermions in the {A}shtekar–{B}arbero connection formalism for arbitrary values of the Immirzi parameter”, Phys. Rev. D, 73 (2006), 084016, 14 pp. ; arXiv: gr-qc/0601013 | DOI | MR
[100] Perez A., “The spin foam approach to quantum gravity”, Living Rev. Relativ. (to appear)
[101] Perez A., Rovelli C., “Physical effects of the Immirzi parameter in loop quantum gravity”, Phys. Rev. D, 73 (2006), 044013, 3 pp. ; arXiv: gr-qc/0505081 | DOI | MR
[102] Regge T., “General relativity without coordinates”, Nuovo Cimento, 19 (1961), 558–571 | DOI | MR
[103] Reisenberger M.P., “Classical Euclidean general relativity from “left-handed area = right-handed area””, Classical Quantum Gravity, 16 (1999), 1357–1371 ; arXiv: gr-qc/9804061 | DOI | MR | Zbl
[104] Reisenberger M.P., “On relativistic spin network vertices”, J. Math. Phys., 40 (1999), 2046–2054 ; arXiv: gr-qc/9809067 | DOI | MR | Zbl
[105] Reisenberger M.P., Rovelli C., ““Sum over surfaces” form of loop quantum gravity”, Phys. Rev. D, 56 (1997), 3490–3508 ; arXiv: gr-qc/9612035 | DOI | MR
[106] Renteln P., Smolin L., “A lattice approach to spinorial quantum gravity”, Classical Quantum Gravity, 6 (1989), 275–294 | DOI | MR | Zbl
[107] Rovelli C., “Basis of the Ponzano–Regge–Turaev–Viro–Ooguri quantum-gravity model is the loop representation basis”, Phys. Rev. D, 48 (1993), 2702–2707 ; arXiv: hep-th/9304164 | DOI | MR
[108] Rovelli C., Discretizing parametrized systems: the magic of Ditt-invariance, arXiv: 1107.2310
[109] Rovelli C., “Graviton propagator from background-independent quantum gravity”, Phys. Rev. Lett., 97 (2006), 151301, 4 pp. ; arXiv: gr-qc/0508124 | DOI | MR | Zbl
[110] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[111] Rovelli C., Speziale S., “Lorentz covariance of loop quantum gravity”, Phys. Rev. D, 83 (2011), 104029, 6 pp. ; arXiv: 1012.1739 | DOI
[112] Rovelli C., Speziale S., “On the geometry of loop quantum gravity on a graph”, Phys. Rev. D, 82 (2010), 044018, 6 pp. ; arXiv: 1005.2927 | DOI | MR
[113] Rovelli C., Wilson-Ewing E., Discrete symmetries in covariant LQG, arXiv: 1205.0733
[114] Schmidt J., Kohler C., “Torsion degrees of freedom in the Regge calculus as dislocations on the simplicial lattice”, Gen. Relativity Gravitation, 33 (2001), 1799–1807 ; arXiv: gr-qc/0103111 | DOI | MR | Zbl
[115] Speziale S., “Bi-metric theory of gravity from the non-chiral Plebanski action”, Phys. Rev. D, 82 (2010), 064003, 17 pp. ; arXiv: 1003.4701 | DOI | MR
[116] Speziale S., Wieland W.M., New vertices and canonical quantization, arXiv: 1207.6348
[117] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 ; arXiv: gr-qc/0110034 | DOI | MR | Zbl
[118] Thiemann T., “Quantum spin dynamics (QSD). VII. Symplectic structures and continuum lattice formulations of gauge field theories”, Classical Quantum Gravity, 18 (2001), 3293–3338 ; arXiv: hep-th/0005232 | DOI | MR | Zbl
[119] Waelbroeck H., Zapata J.A., “A Hamiltonian lattice formulation of topological gravity”, Classical Quantum Gravity, 11 (1994), 989–998 ; arXiv: gr-qc/9311035 | DOI | MR | Zbl
[120] Wainwright C., Williams R.M., “Area Regge calculus and discontinuous metrics”, Classical Quantum Gravity, 21 (2004), 4865–4880 ; arXiv: gr-qc/0405031 | DOI | MR | Zbl
[121] Wieland W.M., “Twistorial phase space for complex Ashtekar variables”, Classical Quantum Gravity, 29 (2012), 045007, 18 pp. ; arXiv: 1107.5002 | DOI | MR | Zbl
[122] Williams R.M., “Quantum Regge calculus”, Approaches to Quantum Gravity, ed. D. Oriti, Cambridge University Press, Cambridge, 2009, 360–377 | DOI | Zbl
[123] Williams R.M., “Recent progress in Regge calculus”, Nuclear Phys. B Proc. Suppl., 57 (1997), 73–81 ; arXiv: gr-qc/9702006 | DOI | MR | Zbl