On Lie algebroids and Poisson algebras
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce and study a class of Lie algebroids associated to faithful modules which is motivated by the notion of cotangent Lie algebroids of Poisson manifolds. We also give a classification of transitive Lie algebroids and describe Poisson algebras by using the notions of algebroid and Lie connections.
Keywords: transitive Lie algebroids, Lie–Rinehart algebras, algebraic connections.
Mots-clés : Poisson brackets
@article{SIGMA_2012_8_a5,
     author = {Dennise Garc{\'\i}a-Beltr\'an and Jos\'e A. Vallejo and Yuriǐ Vorobjev},
     title = {On {Lie} algebroids and {Poisson} algebras},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a5/}
}
TY  - JOUR
AU  - Dennise García-Beltrán
AU  - José A. Vallejo
AU  - Yuriǐ Vorobjev
TI  - On Lie algebroids and Poisson algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a5/
LA  - en
ID  - SIGMA_2012_8_a5
ER  - 
%0 Journal Article
%A Dennise García-Beltrán
%A José A. Vallejo
%A Yuriǐ Vorobjev
%T On Lie algebroids and Poisson algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a5/
%G en
%F SIGMA_2012_8_a5
Dennise García-Beltrán; José A. Vallejo; Yuriǐ Vorobjev. On Lie algebroids and Poisson algebras. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a5/

[1] Abraham R., Marsden J.E., Kelley A., Kolmogorov A.N., Foundations of mechanics, W.A. Benjamin, Inc., New York – Amsterdam, 1967 | MR

[2] Atkin C.J., Grabowski J., “Homomorphisms of the Lie algebras associated with a symplectic manifold”, Compositio Math., 76 (1990), 315–349 | MR | Zbl

[3] Beltrán J.V., Monterde J., “Graded Poisson structures on the algebra of differential forms”, Comment. Math. Helv., 70 (1995), 383–402 | DOI | MR | Zbl

[4] Connes A., “Noncommutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 1985, 257–360 | MR

[5] Cuntz J., Quillen D., “Algebra extensions and nonsingularity”, J. Amer. Math. Soc., 8 (1995), 251–289 | DOI | MR | Zbl

[6] Dubois-Violette M., Michor P.W., “Dérivations et calcul différentiel non commutatif. II”, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 927–931 | MR | Zbl

[7] Dufour J.P., Zung N.T., Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | MR | Zbl

[8] Grabowski J., “Quasi-derivations and {QD}-algebroids”, Rep. Math. Phys., 52 (2003), 445–451 ; arXiv: math.DG/0301234 | DOI | MR | Zbl

[9] Herz J.C., “Pseudo-algèbres de Lie. I”, C. R. Acad. Sci. Paris, 236 (1953), 1935–1937 | MR | Zbl

[10] Herz J.C., “Pseudo-algèbres de Lie. II”, C. R. Acad. Sci. Paris, 236 (1953), 2289–2291 | MR | Zbl

[11] Huebschmann J., “Poisson cohomology and quantization”, J. Reine Angew. Math., 408 (1990), 57–113 | DOI | MR | Zbl

[12] Huebschmann J., “Lie–Rinehart algebras, Gerstenhaber algebras and Batalin–Vilkovisky algebras”, Ann. Inst. Fourier (Grenoble), 48 (1998), 425–440 ; arXiv: dg-ga/9704005 | DOI | MR | Zbl

[13] Huebschmann J., “Extensions of Lie–Rinehart algebras and the Chern–Weil construction”, Higher Homotopy Structures in Topology and Mathematical Physics (Poughkeepsie, NY, 1996), Contemp. Math., 227, Amer. Math. Soc., Providence, RI, 1999, 145–176 ; arXiv: dg-ga/9706002 | DOI | MR | Zbl

[14] Katz N.M., “Nilpotent connections and the monodromy theorem: applications of a result of Turrittin”, Inst. Hautes Études Sci. Publ. Math., 1970, no. 39, 175–232 | DOI | MR | Zbl

[15] Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR

[16] Kosmann-Schwarzbach Y., Mackenzie K.C.H., “Differential operators and actions of Lie algebroids”, in Quantization, Poisson Brackets and Beyond (Manchester, 2001), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, 2002, 213–233 ; arXiv: math.DG/0209337 | DOI | MR | Zbl

[17] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35–81 | MR | Zbl

[18] Koszul J.L., “Crochet de {S}chouten–{N}ijenhuis et cohomologie”, Astérisque, no. Numero Hors Serie, 1985, 257–271 | MR | Zbl

[19] Kubarski J., “The Chern–Weil homomorphism of regular Lie algebroids”, Publications du Département de Mathématiques, Nouvelle Série A, Univ. Claude-Bernard, Lyon, 1991, 1–70

[20] Mackenzie K.C.H., “Lie algebroids and Lie pseudoalgebras”, Bull. London Math. Soc., 27 (1995), 97–147 | DOI | MR | Zbl

[21] Mackenzie K.C.H., “General theory of Lie groupoids and Lie algebroids”, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[22] Rinehart G.S., “Differential forms on general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR | Zbl

[23] Vorobiev Yu., “On Poisson realizations of transitive Lie algebroids”, J. Nonlinear Math. Phys., 11, suppl. (2004), 43–48 | DOI | MR

[24] Vorobjev Yu., “Coupling tensors and Poisson geometry near a single symplectic leaf”, Lie Algebroids and Related Topics in Differential Geometry (Warsaw, 2000), Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001, 249–274 ; arXiv: math.SP/0008162 | MR | Zbl