@article{SIGMA_2012_8_a49,
author = {Robert Oeckl},
title = {Holomorphic quantization of linear field theory in the general boundary formulation},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a49/}
}
Robert Oeckl. Holomorphic quantization of linear field theory in the general boundary formulation. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a49/
[1] Atiyah M., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 1988, 175–186 | DOI | MR | Zbl
[2] Bargmann V., “On a Hilbert space of analytic functions and an associated integral transform. Part I”, Comm. Pure Appl. Math., 14 (1961), 187–214 | DOI | MR | Zbl
[3] Bargmann V., Remarks on a Hilbert space of analytic functions, Proc. Nat. Acad. Sci. USA, 48 (1962), 199–204 | DOI | MR | Zbl
[4] Bochner S., Harmonic analysis and the theory of probability, University of California Press, Berkeley and Los Angeles, 1955 | MR
[5] Colosi D., On the structure of the vacuum state in general boundary quantum field theory, arXiv: 0903.2476
[6] Colosi D., $S$-matrix in de Sitter spacetime from general boundary quantum field theory, arXiv: 0910.2756
[7] Colosi D., Oeckl R., “On unitary evolution in quantum field theory in curved spacetime”, Open Nuclear Part. Phys. J., 4 (2011), 13–20 ; arXiv: 0912.0556 | DOI
[8] Colosi D., Oeckl R., “$S$-matrix at spatial infinity”, Phys. Lett. B, 665 (2008), 310–313 ; arXiv: 0710.5203 | DOI | MR
[9] Colosi D., Oeckl R., “Spatially asymptotic $S$-matrix from general boundary formulation”, Phys. Rev. D, 78 (2008), 025020, 22 pp. ; arXiv: 0802.2274 | DOI
[10] Colosi D., Oeckl R., “States and amplitudes for finite regions in a two-dimensional Euclidean quantum field theory”, J. Geom. Phys., 59 (2009), 764–780 ; arXiv: 0811.4166 | DOI | MR | Zbl
[11] Conrady F., Doplicher L., Oeckl R., Rovelli C., Testa M., “Minkowski vacuum in background independent quantum gravity”, Phys. Rev. D, 69 (2004), 064019, 7 pp. ; arXiv: gr-qc/0307118 | DOI | MR
[12] Conrady F., Rovelli C., “Generalized Schrödinger equation in Euclidean field theory”, Internat. J. Modern Phys. A, 19 (2004), 4037–4068 ; arXiv: hep-th/0310246 | DOI | MR | Zbl
[13] Doplicher L., “Generalized Tomonaga–Schwinger equation from the Hadamard formula”, Phys. Rev. D, 70 (2004), 064037, 7 pp. ; arXiv: gr-qc/0405006 | DOI | MR
[14] Haag R., Kastler D., “An algebraic approach to quantum field theory”, J. Math. Phys., 5 (1964), 848–861 | DOI | MR | Zbl
[15] Lang S., Real and functional analysis, Graduate Texts in Mathematics, 142, 3rd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[16] Oeckl R., “A “general boundary” formulation for quantum mechanics and quantum gravity”, Phys. Lett. B, 575 (2003), 318–324 ; arXiv: hep-th/0306025 | DOI | MR | Zbl
[17] Oeckl R., “Affine holomorphic quantization”, J. Geom. Phys., 62 (2012), 1373–1396 ; arXiv: 1104.5527 | DOI | Zbl
[18] Oeckl R., Against commutators, Talk at Perimeter Institute (Waterloo, Canada, January 20, 2009) available at http://pirsa.org/09010002/
[19] Oeckl R., “General boundary quantum field theory: foundations and probability interpretation”, Adv. Theor. Math. Phys., 12 (2008), 319–352 ; arXiv: hep-th/0509122 | MR | Zbl
[20] Oeckl R., “General boundary quantum field theory: timelike hypersurfaces in the Klein–Gordon theory”, Phys. Rev. D, 73 (2006), 065017, 13 pp. ; arXiv: hep-th/0509123 | DOI | MR
[21] Oeckl R., “Probabilities in the general boundary formulation”, J. Phys. Conf. Ser., 67 (2007), 012049, 6 pp. ; arXiv: hep-th/0612076 | DOI
[22] Oeckl R., “Schrödinger's cat and the clock: lessons for quantum gravity”, Classical Quantum Gravity, 20 (2003), 5371–5380 ; arXiv: gr-qc/0306007 | DOI | MR | Zbl
[23] Oeckl R., “States on timelike hypersurfaces in quantum field theory”, Phys. Lett. B, 622 (2005), 172–177 ; arXiv: hep-th/0505267 | DOI | MR
[24] Oeckl R., “The general boundary approach to quantum gravity”, Proceedings of the First International Conference on Physics (Tehran, 2004), Amirkabir University, Tehran, 2004, 257–265; arXiv: gr-qc/0312081
[25] Oeckl R., “Two-dimensional quantum Yang–Mills theory with corners”, J. Phys. A: Math. Theor., 41 (2008), 135401, 20 pp. ; arXiv: hep-th/0608218 | DOI | MR | Zbl
[26] Osterwalder K., Schrader R., “Axioms for Euclidean Green's functions”, Comm. Math. Phys., 31 (1973), 83–112 | DOI | MR | Zbl
[27] Osterwalder K., Schrader R., “Axioms for Euclidean Green's functions. II”, Comm. Math. Phys., 42 (1975), 281–305 | DOI | MR | Zbl
[28] Segal G., “The definition of conformal field theory”, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, Cambridge University Press, Cambridge, 2004, 421–577 | MR
[29] Streater R.F., Wightman A.S., PCT, spin and statistics, and all that, W.A. Benjamin, Inc., New York – Amsterdam, 1964 | MR | Zbl
[30] Sudakov V.N., “Linear sets with quasi-invariant measure”, Dokl. Akad. Nauk SSSR, 127 (1959), 524–525 | MR | Zbl
[31] Turaev V.G., Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., Berlin, 1994 | MR | Zbl
[32] Wald R.M., Quantum field theory in curved spacetime and black hole thermodynamics, Chicago Lectures in Physics, University of Chicago Press, Chicago, IL, 1994 | MR
[33] Woodhouse N., Geometric quantization, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1980 | MR