Hermite and Laguerre symmetric functions associated with operators of Calogero–Moser–Sutherland type
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce and study natural generalisations of the Hermite and Laguerre polynomials in the ring of symmetric functions as eigenfunctions of infinite-dimensional analogues of partial differential operators of Calogero–Moser–Sutherland (CMS) type. In particular, we obtain generating functions, duality relations, limit transitions from Jacobi symmetric functions, and Pieri formulae, as well as the integrability of the corresponding operators. We also determine all ideals in the ring of symmetric functions that are spanned by either Hermite or Laguerre symmetric functions, and by restriction of the corresponding infinite-dimensional CMS operators onto quotient rings given by such ideals we obtain so-called deformed CMS operators. As a consequence of this restriction procedure, we deduce, in particular, infinite sets of polynomial eigenfunctions, which we shall refer to as super Hermite and super Laguerre polynomials, as well as the integrability, of these deformed CMS operators. We also introduce and study series of a generalised hypergeometric type, in the context of both symmetric functions and ‘super’ polynomials.
Keywords: symmetric functions, super-symmetric polynomials, (deformed) Calogero–Moser–Sutherland models.
@article{SIGMA_2012_8_a48,
     author = {Patrick Desrosiers and Martin Halln\"as},
     title = {Hermite and {Laguerre} symmetric functions associated with operators of {Calogero{\textendash}Moser{\textendash}Sutherland} type},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a48/}
}
TY  - JOUR
AU  - Patrick Desrosiers
AU  - Martin Hallnäs
TI  - Hermite and Laguerre symmetric functions associated with operators of Calogero–Moser–Sutherland type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a48/
LA  - en
ID  - SIGMA_2012_8_a48
ER  - 
%0 Journal Article
%A Patrick Desrosiers
%A Martin Hallnäs
%T Hermite and Laguerre symmetric functions associated with operators of Calogero–Moser–Sutherland type
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a48/
%G en
%F SIGMA_2012_8_a48
Patrick Desrosiers; Martin Hallnäs. Hermite and Laguerre symmetric functions associated with operators of Calogero–Moser–Sutherland type. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a48/

[1] Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison-Wesley Publishing Co., 1969 | MR | Zbl

[2] Baker T.H., Forrester P.J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216 ; arXiv: solv-int/9608004 | DOI | MR | Zbl

[3] Beerends R.J., Opdam E.M., “Certain hypergeometric series related to the root system $BC$”, Trans. Amer. Math. Soc., 339 (1993), 581–609 | DOI | MR | Zbl

[4] Bernard D., Gaudin M., Haldane F.D.M., Pasquier V., “Yang–Baxter equation in long-range interacting systems”, J. Phys. A: Math. Gen., 26 (1993), 5219–5236 ; arXiv: hep-th/9301084 | DOI | MR | Zbl

[5] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR

[6] Chalykh O., Feigin M., Veselov A., “New integrable generalizations of Calogero–Moser quantum problem”, J. Math. Phys., 39 (1998), 695–703 | DOI | MR | Zbl

[7] Cherednik I., “Integration of quantum many-body problems by affine Knizhnik–Zamolodchikov equations”, Adv. Math., 106 (1994), 65–95 | DOI | MR | Zbl

[8] Constantine A.G., “The distribution of Hotelling's generalized $T_{0}^{2}$”, Ann. Math. Statist., 37 (1966), 215–225 | DOI | MR | Zbl

[9] Debiard A., “Système différentiel hypergéométrique et parties radiales des opérateurs invariants des espaces symétriques de type $BC_p$”, Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986), Lecture Notes in Math., 1296, Springer, Berlin, 1987, 42–124 | DOI | MR

[10] Desrosiers P., Dang-Zheng L., Selberg integrals, super hypergeometric functions and applications to $\beta $-ensembles of random matrices, arXiv: 1109.4659

[11] Feigin M., “Generalized Calogero–Moser systems from rational Cherednik algebras”, Selecta Math. (N.S.), 18 (2012), 253–281 ; arXiv: 0809.3487 | DOI | MR | Zbl

[12] Hallnäs M., Langmann E., “A unified construction of generalized classical polynomials associated with operators of Calogero–Sutherland type”, Constr. Approx., 31 (2010), 309–342 ; arXiv: math-ph/0703090 | DOI | MR | Zbl

[13] Heckman G.J., Opdam E.M., “Root systems and hypergeometric functions. I”, Compositio Math., 64 (1987), 329–352 | MR | Zbl

[14] Herz C.S., “Bessel functions of matrix argument”, Ann. of Math. (2), 61 (1955), 474–523 | DOI | MR | Zbl

[15] Heyneman R.G., Sweedler M.E., “Affine {H}opf algebras. I”, J. Algebra, 13 (1969), 192–241 | DOI | MR | Zbl

[16] James A.T., “Special functions of matrix and single argument in statistics”, Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, 497–520 | MR

[17] James A.T., Constantine A.G., “Generalized Jacobi polynomials as spherical functions of the Grassmann manifold”, Proc. London Math. Soc. (3), 29 (1974), 174–192 | DOI | MR | Zbl

[18] Kaneko J., “Selberg integrals and hypergeometric functions associated with Jack polynomials”, SIAM J. Math. Anal., 24 (1993), 1086–1110 | DOI | MR | Zbl

[19] Kerov S., Okounkov A., Olshanski G., “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not., 1998:4 (1998), 173–199 | DOI | MR | Zbl

[20] Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998 http://aw.twi.tudelft.nl/~koekoek/askey/

[21] Kohler H., Guhr T., “Supersymmetric extensions of Calogero–Moser–Sutherland-like models: construction and some solutions”, J. Phys. A: Math. Gen., 38 (2005), 9891–9915 ; arXiv: math-ph/0510039 | DOI | MR | Zbl

[22] Korányi A., “Hua-type integrals, hypergeometric functions and symmetric polynomials”, International Symposium in Memory of Hua Loo Keng (Beijing, 1988), v. II, Springer, Berlin, 1991, 169–180 | MR | Zbl

[23] Lassalle M., “Coefficients binomiaux généralisés et polynômes de Macdonald”, J. Funct. Anal., 158 (1998), 289–324 | DOI | MR | Zbl

[24] Lassalle M., “Polynômes de Hermite généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 579–582 | MR | Zbl

[25] Lassalle M., “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 425–428 | MR | Zbl

[26] Lassalle M., “Polynômes de Laguerre généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 725–728 | MR | Zbl

[27] Lassalle M., “Une formule du binôme généralisée pour les polynômes de Jack”, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 253–256 | MR | Zbl

[28] Macdonald I.G., Hypergeometric functions, unpublished

[29] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR | Zbl

[30] Moens E.M., Van der Jeugt J., “On dimension formulas for $\mathfrak{gl}(m|n)$ representations”, J. Lie Theory, 14 (2004), 523–535 | MR | Zbl

[31] Muirhead R.J., Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons Inc., New York, 1982 | DOI | MR | Zbl

[32] Okounkov A., Olshanski G., “Shifted Jack polynomials, binomial formula, and applications”, Math. Res. Lett., 4 (1997), 69–78 ; arXiv: q-alg/9608020 | MR | Zbl

[33] Olshanetsky M.A., Perelomov A.M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[34] Olshanski G., “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Int. Math. Res. Not. (to appear)

[35] Olshanski G., “Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes”, J. Math. Sci., 174 (2011), 41–57 ; arXiv: 1009.2037 | DOI | MR

[36] Opdam E.M., “Some applications of hypergeometric shift operators”, Invent. Math., 98 (1989), 1–18 | DOI | MR | Zbl

[37] Opdam E.M., Lecture notes on Dunkl operators for real and complex reflection groups, MSJ Memoirs, 8, Mathematical Society of Japan, Tokyo, 2000 | MR | Zbl

[38] Rains E.M., “$\mathrm{BC}_n$-symmetric polynomials”, Transform. Groups, 10 (2005), 63–132 ; arXiv: math.QA/0112035 | DOI | MR | Zbl

[39] Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, 2nd ed., Academic Press Inc., New York, 1980 | MR

[40] Sergeev A., “Superanalogs of the Calogero operators and Jack polynomials”, J. Nonlinear Math. Phys., 8 (2001), 59–64 ; arXiv: math.RT/0106222 | DOI | MR | Zbl

[41] Sergeev A.N., Veselov A.P., “$BC_\infty$ Calogero–Moser operator and super Jacobi polynomials”, Adv. Math., 222 (2009), 1687–1726 ; arXiv: 0807.3858 | DOI | MR | Zbl

[42] Sergeev A.N., Veselov A.P., “Deformed quantum Calogero–Moser problems and Lie superalgebras”, Comm. Math. Phys., 245 (2004), 249–278 ; arXiv: math-ph/0303025 | DOI | MR | Zbl

[43] Sergeev A.N., Veselov A.P., “Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials”, Adv. Math., 192 (2005), 341–375 ; arXiv: math-ph/0307036 | DOI | MR | Zbl

[44] Sergeev A.N., Veselov A.P., “Quantum Calogero–Moser systems: a view from infinity”, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 333–337 ; arXiv: 0910.5463 | DOI | MR | Zbl

[45] Stanley R.P., “Some combinatorial properties of Jack symmetric functions”, Adv. Math., 77 (1989), 76–115 | DOI | MR | Zbl

[46] van Diejen J.F., “Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement”, Comm. Math. Phys., 188 (1997), 467–497 ; arXiv: q-alg/9609032 | DOI | MR | Zbl

[47] van Diejen J.F., “Properties of some families of hypergeometric orthogonal polynomials in several variables”, Trans. Amer. Math. Soc., 351 (1999), 233–270 ; arXiv: q-alg/9604004 | DOI | MR | Zbl

[48] Yan Z.M., “A class of generalized hypergeometric functions in several variables”, Canad. J. Math., 44 (1992), 1317–1338 | DOI | MR | Zbl