@article{SIGMA_2012_8_a47,
author = {Jacobo Diaz-Polo and Daniele Pranzetti},
title = {Isolated horizons and black hole entropy in {Loop} {Quantum} {Gravity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a47/}
}
Jacobo Diaz-Polo; Daniele Pranzetti. Isolated horizons and black hole entropy in Loop Quantum Gravity. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a47/
[1] Agulló I., Barbero G. J.F., Borja E.F., Diaz-Polo J., Villaseñor E.J.S., “Combinatorics of the $SU(2)$ black hole entropy in loop quantum gravity”, Phys. Rev. D, 80 (2009), 084006, 3 pp. ; arXiv: 0906.4529 | DOI | MR
[2] Agulló I., Barbero G. J.F., Borja E.F., Diaz-Polo J., Villaseñor E.J.S., “Detailed black hole state counting in loop quantum gravity”, Phys. Rev. D, 82 (2010), 084029, 31 pp. ; arXiv: 1101.3660 | DOI
[3] Agulló I., Barbero G. J.F., Diaz-Polo J., Borja E.F., Villaseñor E.J.S., “Black hole state counting in loop quantum gravity: a number-theoretical approach”, Phys. Rev. Lett., 100 (2008), 211301, 4 pp. ; arXiv: 0802.4077 | DOI | MR | Zbl
[4] Agulló I., Borja E.F., Diaz-Polo J., “Computing black hole entropy in loop quantum gravity from a conformal field theory perspective”, J. Cosmol. Astropart. Phys., 2009 (2009), 016, 9 pp. ; arXiv: 0903.1667 | DOI
[5] Agulló I., Diaz-Polo J., Borja E.F., “Black hole state degeneracy in loop quantum gravity”, Phys. Rev. D, 77 (2008), 104024, 11 pp. ; arXiv: 0802.3188 | DOI | MR
[6] Archer F., Williams R.M., “The Turaev–Viro state sum model and three-dimensional quantum gravity”, Phys. Lett. B, 273 (1991), 438–444 | DOI | MR
[7] Ashtekar A., Baez J., Corichi A., Krasnov K., “Quantum geometry and black hole entropy”, Phys. Rev. Lett., 80 (1998), 904–907 ; arXiv: gr-qc/9710007 | DOI | MR | Zbl
[8] Ashtekar A., Baez J.C., Krasnov K., “Quantum geometry of isolated horizons and black hole entropy”, Adv. Theor. Math. Phys., 4 (2000), 1–94 ; arXiv: gr-qc/0005126 | MR | Zbl
[9] Ashtekar A., Beetle C., Dreyer O., Fairhurst S., Krishnan B., Lewandowski J., Wiśniewski J., “Generic isolated horizons and their applications”, Phys. Rev. Lett., 85 (2000), 3564–3567 ; arXiv: gr-qc/0006006 | DOI | MR
[10] Ashtekar A., Beetle C., Fairhurst S., “Isolated horizons: a generalization of black hole mechanics”, Classical Quantum Gravity, 16 (1999), L1–L7 ; arXiv: gr-qc/9812065 | DOI | MR | Zbl
[11] Ashtekar A., Beetle C., Fairhurst S., “Mechanics of isolated horizons”, Classical Quantum Gravity, 17 (2000), 253–298 ; arXiv: gr-qc/9907068 | DOI | MR | Zbl
[12] Ashtekar A., Beetle C., Lewandowski J., “Geometry of generic isolated horizons”, Classical Quantum Gravity, 19 (2002), 1195–1225 ; arXiv: gr-qc/0111067 | DOI | MR | Zbl
[13] Ashtekar A., Beetle C., Lewandowski J., “Mechanics of rotating isolated horizons”, Phys. Rev. D, 64 (2001), 044016, 17 pp. ; arXiv: gr-qc/0103026 | DOI | MR
[14] Ashtekar A., Bojowald M., “Black hole evaporation: a paradigm”, Classical Quantum Gravity, 22 (2005), 3349–3362 ; arXiv: gr-qc/0504029 | DOI | MR | Zbl
[15] Ashtekar A., Bojowald M., “Quantum geometry and the Schwarzschild singularity”, Classical Quantum Gravity, 23 (2006), 391–411 ; arXiv: gr-qc/0509075 | DOI | MR | Zbl
[16] Ashtekar A., Corichi A., Krasnov K., “Isolated horizons: the classical phase space”, Adv. Theor. Math. Phys., 3 (1999), 419–478 ; arXiv: gr-qc/9905089 | MR | Zbl
[17] Ashtekar A., Engle J., Pawlowski T., Van Den Broeck C., “Multipole moments of isolated horizons”, Classical Quantum Gravity, 21 (2004), 2549–2570 ; arXiv: gr-qc/0401114 | DOI | MR | Zbl
[18] Ashtekar A., Engle J., Van Den Broeck C., “Quantum horizons and black-hole entropy: inclusion of distortion and rotation”, Classical Quantum Gravity, 22 (2005), L27–L34 ; arXiv: gr-qc/0412003 | DOI | MR | Zbl
[19] Ashtekar A., Fairhurst S., Krishnan B., “Isolated horizons: Hamiltonian evolution and the first law”, Phys. Rev. D, 62 (2000), 104025, 29 pp. ; arXiv: gr-qc/0005083 | DOI | MR
[20] Ashtekar A., Krishnan B., “Dynamical horizons and their properties”, Phys. Rev. D, 68 (2003), 104030, 25 pp. ; arXiv: gr-qc/0308033 | DOI | MR
[21] Ashtekar A., Krishnan B., “Dynamical horizons: energy, angular momentum, fluxes, and balance laws”, Phys. Rev. Lett., 89 (2002), 261101, 4 pp. ; arXiv: gr-qc/0207080 | DOI | MR
[22] Ashtekar A., Krishnan B., “Isolated and dynamical horizons and their applications”, Living Rev. Relativ., 7 (2004), 10, 91 pp. ; arXiv: gr-qc/0407042 | Zbl
[23] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152 ; arXiv: gr-qc/0404018 | DOI | MR | Zbl
[24] Ashtekar A., Taveras V., Varadarajan M., “Information is not lost in the evaporation of 2D black holes”, Phys. Rev. Lett., 100 (2008), 211302, 4 pp. ; arXiv: 0801.1811 | DOI | MR | Zbl
[25] Barbero G. J.F., Villaseñor E.J.S., “Generating functions for black hole entropy in loop quantum gravity”, Phys. Rev. D, 77 (2008), 121502, 5 pp. ; arXiv: 0804.4784 | DOI | MR
[26] Barbero G. J.F., Villaseñor E.J.S., “On the computation of black hole entropy in loop quantum gravity”, Classical Quantum Gravity, 26 (2009), 035017, 22 pp. ; arXiv: 0810.1599 | DOI | MR | Zbl
[27] Barbero G. J.F., Villaseñor E.J.S., “Statistical description of the black hole degeneracy spectrum”, Phys. Rev. D, 83 (2011), 104013, 21 pp. ; arXiv: 1101.3662 | DOI
[28] Barbero G. J.F., Villaseñor E.J.S., “The thermodynamic limit and black hole entropy in the area ensemble”, Classical Quantum Gravity, 28 (2011), 215014, 15 pp. ; arXiv: 1106.3179 | DOI | MR | Zbl
[29] Barrau A., Cailleteau T., Cao X., Diaz-Polo J., Grain J., “Probing loop quantum gravity with evaporating black holes”, Phys. Rev. Lett., 107 (2011), 251301, 5 pp. ; arXiv: 1109.4239 | DOI
[30] Beetle C., Engle J., “Generic isolated horizons in loop quantum gravity”, Classical Quantum Gravity, 27 (2010), 235024, 13 pp. ; arXiv: 1007.2768 | DOI | MR | Zbl
[31] Bekenstein J.D., “Black holes and entropy”, Phys. Rev. D, 7 (1973), 2333–2346 | DOI | MR
[32] Bianchi E., “Black hole entropy, loop gravity, and polymer physics”, Classical Quantum Gravity, 28 (2011), 114006, 12 pp. ; arXiv: 1011.5628 | DOI | MR | Zbl
[33] Bojowald M., “Nonsingular black holes and degrees of freedom in quantum gravity”, Phys. Rev. Lett., 95 (2005), 061301, 4 pp. ; arXiv: gr-qc/0506128 | DOI | MR
[34] Bojowald M., Kastrup H.A., “Symmetry reduction for quantized diffeomorphism-invariant theories of connections”, Classical Quantum Gravity, 17 (2000), 3009–3043 ; arXiv: hep-th/9907042 | DOI | MR | Zbl
[35] Booth I., “Black hole boundaries”, Can. J. Phys., 83 (2005), 1073–1099 ; arXiv: gr-qc/0508107 | DOI
[36] Broderick A.E., Loeb A., Narayan R., “The event horizon of sagittarius A$^*$”, Astrophys. J., 701 (2009), 1357–1366 ; arXiv: 0903.1105 | DOI
[37] Burton D.M., Elementary number theory, McGraw-Hill, New York, 2002
[38] Carlip S., “Black hole entropy from conformal field theory in any dimension”, Phys. Rev. Lett., 82 (1999), 2828–2831 ; arXiv: hep-th/9812013 | DOI | MR | Zbl
[39] Carlip S., “Black hole thermodynamics and statistical mechanics”, Physics of Black Holes, Lecture Notes in Phys., 769, Springer, Berlin, 2009, 89–123 ; arXiv: 0807.4520 | DOI | MR | Zbl
[40] Carlip S., “Entropy from conformal field theory at Killing horizons”, Classical Quantum Gravity, 16 (1999), 3327–3348 ; arXiv: gr-qc/9906126 | DOI | MR | Zbl
[41] Carlip S., “Logarithmic corrections to black hole entropy, from the Cardy formula”, Classical Quantum Gravity, 17 (2000), 4175–4186 ; arXiv: gr-qc/0005017 | DOI | MR | Zbl
[42] Chandrasekhar S., The mathematical theory of black holes, International Series of Monographs on Physics, 69, The Clarendon Press, Oxford University Press, New York, 1992 | MR
[43] Chary V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994
[44] Corichi A., Diaz-Polo J., Borja E.F., “Black hole entropy quantization”, Phys. Rev. Lett., 98 (2007), 181301, 4 pp. ; arXiv: gr-qc/0609122 | DOI | MR | Zbl
[45] Corichi A., Diaz-Polo J., Borja E.F., “Quantum geometry and microscopic black hole entropy”, Classical Quantum Gravity, 24 (2007), 243–251 ; arXiv: gr-qc/0605014 | DOI | MR | Zbl
[46] Corichi A., Wilson-Ewing E., “Surface terms, asymptotics and thermodynamics of the Holst action”, Classical Quantum Gravity, 27 (2010), 205015, 14 pp. ; arXiv: 1005.3298 | DOI | MR | Zbl
[47] Crnković Č., Witten E., “Covariant description of canonical formalism in geometrical theories”, Three Hundred Years of Gravitation, Cambridge University Press, Cambridge, 1987, 676–684 | MR | Zbl
[48] Das S., Kaul R.K., Majumdar P., “New holographic entropy bound from quantum geometry”, Phys. Rev. D, 63 (2001), 044019, 4 pp. ; arXiv: hep-th/0006211 | DOI | MR
[49] De Raedt H., Michielsen K., De Raedt K., Miyashita S., “Number partitioning on a quantum computer”, Phys. Lett. A, 290 (2001), 227–233 ; arXiv: quant-ph/0010018 | DOI | MR | Zbl
[50] DeBenedictis A., Kloster S., Brannlund J., “A note on the symmetry reduction of $SU(2)$ on horizons of various topologies”, Classical Quantum Gravity, 28 (2011), 105023, 11 pp. ; arXiv: 1101.4631 | DOI | MR | Zbl
[51] Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | DOI | MR
[52] Diaz-Polo J., Borja E.F., “Black hole radiation spectrum in loop quantum gravity: isolated horizon framework”, Classical Quantum Gravity, 25 (2008), 105007, 8 pp. ; arXiv: 0706.1979 | DOI | MR | Zbl
[53] Domagala M., Lewandowski J., “Black-hole entropy from quantum geometry”, Classical Quantum Gravity, 21 (2004), 5233–5243 ; arXiv: gr-qc/0407051 | DOI | MR | Zbl
[54] Durka R., Kowalski-Glikman J., “Gravity as a constrained BF theory: Noether charges and Immirzi parameter”, Phys. Rev. D, 83 (2011), 124011, 6 pp. ; arXiv: 1103.2971 | DOI
[55] Engle J., Noui K., Perez A., “Black hole entropy and $SU(2)$ Chern–Simons theory”, Phys. Rev. Lett., 105 (2010), 031302, 4 pp. ; arXiv: 0905.3168 | DOI | MR
[56] Engle J., Noui K., Perez A., Pranzetti D., “Black hole entropy from the $SU(2)$-invariant formulation of type I isolated horizons”, Phys. Rev. D, 82 (2010), 044050, 23 pp. ; arXiv: 1006.0634 | DOI
[57] Engle J., Noui K., Perez A., Pranzetti D., “The $SU(2)$ black hole entropy revisited”, J. High Energy Phys., 2011:5 (2011), 016, 30 pp. ; arXiv: 1103.2723 | DOI | MR
[58] Flajolet P., Sedgewick R., Analytic combinatorics, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl
[59] Fleischhack C., “Representations of the Weyl algebra in quantum geometry”, Comm. Math. Phys., 285 (2009), 67–140 ; arXiv: math-ph/0407006 | DOI | MR | Zbl
[60] Freidel L., Livine E.R., “The fine structure of $SU(2)$ intertwiners from $U(N)$ representations”, J. Math. Phys., 51 (2010), 082502, 19 pp. ; arXiv: 0911.3553 | DOI | MR
[61] Frodden E., Ghosh A., Perez A., A local first law for isolated horizons, arXiv: 1110.4055
[62] Geroch R.P., Held A., Penrose R., “A space-time calculus based on pairs of null directions”, J. Math. Phys., 14 (1973), 874–881 | DOI | MR | Zbl
[63] Ghosh A., Mitra P., “An improved estimate of black hole entropy in the quantum geometry approach”, Phys. Lett. B, 616 (2005), 114–117 ; arXiv: gr-qc/0411035 | DOI | MR
[64] Ghosh A., Mitra P., “Counting black hole microscopic states in loop quantum gravity”, Phys. Rev. D, 74 (2006), 064026, 5 pp. ; arXiv: hep-th/0605125 | DOI | MR
[65] Ghosh A., Mitra P., “Fine-grained state counting for black holes in loop quantum gravity”, Phys. Rev. Lett., 102 (2009), 141302, 4 pp. ; arXiv: 0809.4170 | DOI | MR
[66] Ghosh A., Mitra P., “Log correction to the black hole area law”, Phys. Rev. D, 71 (2005), 027502, 3 pp. ; arXiv: gr-qc/0401070 | DOI | MR
[67] Ghosh A., Perez A., “Black hole entropy and isolated horizons thermodynamics”, Phys. Rev. Lett., 107 (2011), 241301, 5 pp. ; arXiv: 1107.1320 | DOI
[68] Gour G., “Algebraic approach to quantum black holes: logarithmic corrections to black hole entropy”, Phys. Rev. D, 66 (2002), 104022, 8 pp. ; arXiv: gr-qc/0210024 | DOI | MR
[69] Hawking S.W., “Particle creation by black holes”, Comm. Math. Phys., 43 (1975), 199–220 | DOI | MR
[70] Hawking S.W., Ellis G.F.R., The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, London, 1973 | MR | Zbl
[71] Hayward S.A., “General laws of black-hole dynamics”, Phys. Rev. D, 49 (1994), 6467–6474 ; arXiv: gr-qc/9303006 | DOI | MR
[72] Hayward S.A., “Spin coefficient form of the new laws of black hole dynamics”, Classical Quantum Gravity, 11 (1994), 3025–3035 ; arXiv: gr-qc/9406033 | DOI | MR | Zbl
[73] Jacobson T., “A note on renormalization and black hole entropy in loop quantum gravity”, Classical Quantum Gravity, 24 (2007), 4875–4879 ; arXiv: 0707.4026 | DOI | MR | Zbl
[74] Kaul R.K., Majumdar P., “Logarithmic correction to the Bekenstein–Hawking entropy”, Phys. Rev. Lett., 84 (2000), 5255–5257 ; arXiv: gr-qc/0002040 | DOI | MR
[75] Kaul R.K., Majumdar P., “Quantum black hole entropy”, Phys. Lett. B, 439 (1998), 267–270 ; arXiv: gr-qc/9801080 | DOI | MR
[76] Kerr R.P., “Gravitational field of a spinning mass as an example of algebraically special metrics”, Phys. Rev. Lett., 11 (1963), 237–238 | DOI | MR | Zbl
[77] Kloster S., Brannlund J., DeBenedictis A., “Phase space and black-hole entropy of higher genus horizons in loop quantum gravity”, Classical Quantum Gravity, 25 (2008), 065008, 18 pp. ; arXiv: gr-qc/0702036 | DOI | MR | Zbl
[78] Krasnov K., “On quantum statistical mechanics of a Schwarzschild black hole”, Gen. Relativity Gravitation, 30 (1998), 53–68 ; arXiv: gr-qc/9605047 | DOI | MR | Zbl
[79] Krasnov K., “Quantum geometry and thermal radiation from black holes”, Classical Quantum Gravity, 16 (1999), 563–578 ; arXiv: gr-qc/9710006 | DOI | MR | Zbl
[80] Krasnov K., Rovelli C., “Black holes in full quantum gravity”, Classical Quantum Gravity, 26 (2009), 245009, 8 pp. ; arXiv: 0905.4916 | DOI | MR | Zbl
[81] Lee J., Wald R.M., “Local symmetries and constraints”, J. Math. Phys., 31 (1990), 725–743 | DOI | MR | Zbl
[82] Lewandowski J., “Spacetimes admitting isolated horizons”, Classical Quantum Gravity, 17 (2000), L53–L59 ; arXiv: gr-qc/9907058 | DOI | MR | Zbl
[83] Lewandowski J., Okołów A., Sahlmann H., Thiemann T., “Uniqueness of diffeomorphism invariant states on holonomy-flux algebras”, Comm. Math. Phys., 267 (2006), 703–733 ; arXiv: gr-qc/0504147 | DOI | MR | Zbl
[84] Livine E.R., Terno D.R., “Bulk entropy in loop quantum gravity”, Nuclear Phys. B, 794 (2008), 138–153 ; arXiv: 0706.0985 | DOI | MR | Zbl
[85] Livine E.R., Terno D.R., “Quantum black holes: entropy and entanglement on the horizon”, Nuclear Phys. B, 741 (2006), 131–161 ; arXiv: gr-qc/0508085 | DOI | MR | Zbl
[86] Livine E.R., Terno D.R., “The entropic boundary law in BF theory”, Nuclear Phys. B, 806 (2009), 715–734 ; arXiv: 0805.2536 | DOI | MR | Zbl
[87] Lochan K., Vaz C., “Canonical partition function of loop black holes”, Phys. Rev. D, 85 (2012), 104041, 9 pp. ; arXiv: 1202.2301 | DOI
[88] Lochan K., Vaz C., Statistical analysis of entropy correction from topological defects in loop black holes, arXiv: 1205.3974
[89] Massar S., Parentani R., “How the change in horizon area drives black hole evaporation”, Nuclear Phys. B, 575 (2000), 333–356 ; arXiv: gr-qc/9903027 | DOI | MR | Zbl
[90] Meissner K.A., “Black-hole entropy in loop quantum gravity”, Classical Quantum Gravity, 21 (2004), 5245–5251 ; arXiv: gr-qc/0407052 | DOI | MR | Zbl
[91] Mitra P., “Area law for black hole entropy in the $SU(2)$ quantum geometry approach”, Phys. Rev. D, 85 (2012), 104025, 4 pp. ; arXiv: 1107.4605 | DOI
[92] Modesto L., “Disappearance of the black hole singularity in loop quantum gravity”, Phys. Rev. D, 70 (2004), 124009, 5 pp. ; arXiv: gr-qc/0407097 | DOI | MR
[93] Modesto L., “Loop quantum black hole”, Classical Quantum Gravity, 23 (2006), 5587–5601 ; arXiv: gr-qc/0509078 | DOI | MR | Zbl
[94] Müller A., “Experimental evidence of black holes”, PoS Proc. Sci., 2006, PoS(P2GC), 017, 30 pp.; arXiv: astro-ph/0701228
[95] Newman E.T., Couch E., Chinnapared K., Exton A., Prakash A., Torrence R., “Metric of a rotating, charged mass”, J. Math. Phys., 6 (1965), 918–919 | DOI | MR
[96] Ooguri H., Sasakura N., “Discrete and continuum approaches to three-dimensional quantum gravity”, Modern Phys. Lett. A, 6 (1991), 3591–3600 ; arXiv: hep-th/9108006 | DOI | MR | Zbl
[97] Perez A., Introduction to loop quantum gravity and spin foams, arXiv: gr-qc/0409061
[98] Perez A., Pranzetti D., “Static isolated horizons: $SU(2)$ invariant phase space, quantization, and black hole entropy”, Entropy, 13 (2011), 744–777 ; arXiv: 1011.2961 | DOI | MR | Zbl
[99] Pranzetti D., “Radiation from quantum weakly dynamical horizons in loop quantum gravity”, Phys. Rev. Lett., 109 (2012), 011301, 5 pp. ; arXiv: 1204.0702 | DOI
[100] Reid M.J., “Is there a supermassive black hole at the center of the milky way?”, Internat. J. Modern Phys. D, 18 (2009), 889–910 ; arXiv: 0808.2624 | DOI | Zbl
[101] Rendall A.D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. Roy. Soc. London Ser. A, 427 (1990), 221–239 | DOI | MR | Zbl
[102] Rovelli C., “Black hole entropy from loop quantum gravity”, Phys. Rev. Lett., 77 (1996), 3288–3291 ; arXiv: gr-qc/9603063 | DOI | MR | Zbl
[103] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[104] Rovelli C., Thiemann T., “Immirzi parameter in quantum general relativity”, Phys. Rev. D, 57 (1998), 1009–1014 ; arXiv: gr-qc/9705059 | DOI | MR
[105] Sahlmann H., “Black hole horizons from within loop quantum gravity”, Phys. Rev. D, 84 (2011), 044049, 12 pp. ; arXiv: 1104.4691 | DOI
[106] Sahlmann H., “Entropy calculation for a toy black hole”, Classical Quantum Gravity, 25 (2008), 055004, 14 pp. ; arXiv: 0709.0076 | DOI | MR | Zbl
[107] Sahlmann H., “Toward explaining black hole entropy quantization in loop quantum gravity”, Phys. Rev. D, 76 (2007), 104050, 7 pp. ; arXiv: 0709.2433 | DOI | MR
[108] Sahlmann H., Thiemann T., “Chern–Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map”, Phys. Rev. Lett., 108 (2012), 111303, 5 pp. ; arXiv: 1109.5793 | DOI
[109] Smolin L., “Linking topological quantum field theory and nonperturbative quantum gravity”, J. Math. Phys., 36 (1995), 6417–6455 ; arXiv: gr-qc/9505028 | DOI | MR | Zbl
[110] Strominger A., “Black hole entropy from near-horizon microstates”, J. High Energy Phys., 1998:2 (1998), 009, 11 pp. ; arXiv: hep-th/9712251 | DOI | MR | Zbl
[111] Strominger A., Vafa C., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys. Lett. B, 379 (1996), 99–104 ; arXiv: hep-th/9601029 | DOI | MR
[112] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[113] Thiemann T., “Quantum spin dynamics. VIII. The master constraint”, Classical Quantum Gravity, 23 (2006), 2249–2265 ; arXiv: gr-qc/0510011 | DOI | MR | Zbl
[114] Thiemann T., “The Phoenix Project: master constraint programme for loop quantum gravity”, Classical Quantum Gravity, 23 (2006), 2211–2247 ; arXiv: gr-qc/0305080 | DOI | MR | Zbl
[115] Wald R.M., “Black hole entropy is the Noether charge”, Phys. Rev. D, 48 (1993), R3427–R3431 ; arXiv: gr-qc/9307038 | DOI | MR | Zbl
[116] Wald R.M., General relativity, University of Chicago Press, Chicago, IL, 1984 | MR | Zbl
[117] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl