@article{SIGMA_2012_8_a45,
author = {Francesco Calogero},
title = {Another new solvable many-body model of goldfish type},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a45/}
}
Francesco Calogero. Another new solvable many-body model of goldfish type. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a45/
[1] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 ; “Erratum”, J. Math. Phys., 37 (1996), 3646 | DOI | MR | DOI | MR | Zbl
[2] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl
[3] Calogero F., “A solvable $N$-body problem in the plane. I”, J. Math. Phys., 37 (1996), 1735–1759 | DOI | MR | Zbl
[4] Calogero F., Fran{ç}oise J.P., “Hamiltonian character of the motion of the zeros of a polynomial whose coefficients oscillate over time”, J. Phys. A: Math. Gen., 30 (1997), 211–218 | DOI | MR | Zbl
[5] Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008 | DOI | MR | Zbl
[6] Calogero F., “Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related “solvable” many-body problems”, Nuovo Cimento B, 43 (1978), 177–241 | DOI | MR
[7] Calogero F., “The neatest many-body problem amenable to exact treatments (a “goldfish”?)”, Phys. D, 152/153 (2001), 78–84 | DOI | MR | Zbl
[8] Olshanetsky M.A., Perelomov A.M., “Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature”, Lett. Nuovo Cimento, 16 (1976), 333–339 | DOI | MR
[9] Olshanetsky M.A., Perelomov A.M., “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71 (1981), 313–400 | DOI | MR
[10] Perelomov A.M., Integrable systems of classical mechanics and Lie algebras, Birkhäuser Verlag, Basel, 1990 | MR | Zbl
[11] Calogero F., Classical many-body problems amenable to exact treatments, Lecture Notes in Physics. New Series m: Monographs, 66, Springer-Verlag, Berlin, 2001 | MR | Zbl
[12] Calogero F., “Two new solvable dynamical systems of goldfish type”, J. Nonlinear Math. Phys., 17 (2010), 397–414 | DOI | MR | Zbl
[13] Calogero F., “A new goldfish model”, Theoret. and Math. Phys., 167 (2011), 714–724 | DOI
[14] Calogero F., “Another new goldfish model”, Theoret. and Math. Phys., 171 (2012), 629–640 | DOI
[15] Calogero F., “New solvable many-body model of goldfish type”, J. Nonlinear Math. Phys., 19 (2012), 1250006, 19 pp. | DOI | Zbl
[16] Gómez-Ullate D., Sommacal M., “Periods of the goldfish many-body problem”, J. Nonlinear Math. Phys., 12:1 (2005), 351–362 | DOI | MR