Mots-clés : genus 2.
@article{SIGMA_2012_8_a43,
author = {Dafeng Zuo},
title = {Commuting differential operators of rank~3 associated to a curve of genus~2},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a43/}
}
Dafeng Zuo. Commuting differential operators of rank 3 associated to a curve of genus 2. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a43/
[1] Burchnall J.L., Chaundy T.W., “Commutative ordinary differential operators”, Proc. Lond. Math. Soc., s2-21 (1923), 420–440 | DOI | MR | Zbl
[2] Burchnall J.L., Chaundy T.W., “Commutative ordinary differential operators”, Proc. R. Soc. Lond. Ser. A, 118 (1928), 557–583 | DOI | Zbl
[3] Burchnall J.L., Chaundy T.W., “Commutative ordinary differential operators. II. The identity $P^n=Q^m$”, Proc. R. Soc. Lond. Ser. A, 134 (1931), 471–485 | DOI
[4] Dixmier J., “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | MR | Zbl
[5] Dubrovin B.A., “Periodic problems for the Korteweg–de Vries equation in the class of finite band potentials”, Funct. Anal. Appl., 9 (1975), 215–223 | DOI
[6] Dubrovin B.A., Matveev V.B., Novikov S.P., “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russ. Math. Surv., 31:1 (1976), 59–146 | DOI | MR | Zbl
[7] Grinevich P.G., “Rational solutions for the equation of commutation of differential operators”, Funct. Anal. Appl., 16 (1982), 15–19 | DOI | Zbl
[8] Kasman A., “Darboux transformations from $n$-KdV to KP”, Acta Appl. Math., 49 (1997), 179–197 | DOI | MR | Zbl
[9] Kasman A., Rothstein M., “Bispectral Darboux transformations: the generalized Airy case”, Phys. D, 102 (1997), 159–176 ; arXiv: q-alg/9606018 | DOI | MR | Zbl
[10] Krichever I.M., “Commutative rings of ordinary linear differential operators”, Funct. Anal. Appl., 12 (1978), 175–185 | DOI | MR
[11] Krichever I.M., “Integration of nonlinear equations by the methods of algebraic geometry”, Funct. Anal. Appl., 11 (1977), 12–26 | DOI | MR | Zbl
[12] Krichever I.M., “Methods of algebraic geometry in the theory of non-linear equations”, Russ. Math. Surv., 32:6 (1977), 185–213 | DOI | Zbl
[13] Krichever I.M., Novikov S.P., “Holomorphic bundles and nonlinear equations. Finite-gap solutions of rank 2”, Dokl. Akad. Nauk SSSR, 247 (1979), 33–37 | MR | Zbl
[14] Krichever I.M., Novikov S.P., “Holomorphic bundles over Riemann surfaces and the Kadomtsev–Petviashvili equation. I”, Funct. Anal. Appl., 12 (1978), 276–286 | DOI | MR
[15] Latham G.A., Previato E., “Darboux transformations for higher-rank Kadomtsev–Petviashvili and Krichever–Novikov equations”, Acta Appl. Math., 39 (1995), 405–433 | DOI | MR | Zbl
[16] Latham G., Previato E., “Higher rank Darboux transformations”, Singular Limits of Dispersive Waves (Lyon, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 320, Plenum, New York, 1994, 117–134 | MR | Zbl
[17] Mironov A.E., “A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2”, Sb. Math., 195 (2004), 711–722 | DOI | MR | Zbl
[18] Mironov A.E., “Commuting rank 2 differential operators corresponding to a curve of genus 2”, Funct. Anal. Appl., 39 (2005), 240–243 | DOI | MR | Zbl
[19] Mironov A.E., “On commuting differential operators of rank 2”, Sib. Èlektron. Mat. Izv., 6 (2009), 533–536 | MR
[20] Mironov A.E., Self-adjoint commuting differential operators and commutative subalgebras of the Weyl algebra, arXiv: 1107.3356
[21] Mokhov O.I., “Commuting differential operators of rank 3, and nonlinear equations”, Math. USSR Izv., 35 (1990), 629–655 | DOI | MR | Zbl
[22] Mokhov O., On commutative subalgebras of the Weyl algebra that are related to commuting operators of arbitrary rank and genus, arXiv: 1201.5979
[23] Novikov S.P., “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8 (1974), 236–246 | DOI | MR | Zbl
[24] Novikov S.P., Grinevich P.G., “Spectral theory of commuting operators of rank two with periodic coefficients”, Funct. Anal. Appl., 16 (1982), 25–26 | DOI | MR | Zbl
[25] Previato E., “Seventy years of spectral curves: 1923–1993”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 419–481 | DOI | MR | Zbl
[26] Previato E., Wilson G., “Differential operators and rank 2 bundles over elliptic curves”, Compositio Math., 81 (1992), 107–119 | MR | Zbl
[27] Previato E., Wilson G., “Vector bundles over curves and solutions of the KP equations”, Theta Functions, Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 553–569 | MR
[28] Shabat A.B., Elkanova Z.S., “Commuting differential operators”, Theoret. and Math. Phys., 162 (2010), 276–285 | DOI | MR | Zbl
[29] Wilson G., “Bispectral commutative ordinary differential operators”, J. Reine Angew. Math., 442 (1993), 177–204 | DOI | MR | Zbl