Mots-clés : Darboux transformations
@article{SIGMA_2012_8_a42,
author = {Primitivo B. Acosta-Hum\'anez and Chara Pantazi},
title = {Darboux integrals for {Schr\"odinger} planar vector fields via {Darboux} transformations},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a42/}
}
TY - JOUR AU - Primitivo B. Acosta-Humánez AU - Chara Pantazi TI - Darboux integrals for Schrödinger planar vector fields via Darboux transformations JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a42/ LA - en ID - SIGMA_2012_8_a42 ER -
%0 Journal Article %A Primitivo B. Acosta-Humánez %A Chara Pantazi %T Darboux integrals for Schrödinger planar vector fields via Darboux transformations %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a42/ %G en %F SIGMA_2012_8_a42
Primitivo B. Acosta-Humánez; Chara Pantazi. Darboux integrals for Schrödinger planar vector fields via Darboux transformations. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a42/
[1] Acosta-Humánez P.B., Galoisian approach to supersymmetric quantum mechanics. The integrability analysis of the Schrödinger equation by means of differential Galois theory, VDM Verlag, Dr. Müller, Berlin, 2010.
[2] Acosta-Humánez P.B., Lázaro-Ochoa J.T., Morales-Ruiz J.J., Pantazi Ch., On the integrability of polynomial fields in the plane by means of Picard–Vessiot theory, arXiv: 1012.4796
[3] Acosta-Humánez P.B., Morales-Ruiz J.J., Weil J.A., “Galoisian approach to integrability of Schrödinger equation”, Rep. Math. Phys., 67 (2011), 305–374 ; arXiv: 1008.3445 | DOI | MR | Zbl
[4] Berkovich L.M., Evlakhov S.A., “The Euler–Imshenetskiĭ–Darboux transformation of second-order linear equations”, Program. Comput. Software, 32 (2006), 154–165 | DOI | MR | Zbl
[5] Blázquez-Sanz D., Pantazi Ch., A note on the Darboux theory of integrability of non autonomous polynomial differential systems, Preprint, 2011 | MR | Zbl
[6] Blecua P., Boya L.J., Segui A., “New solvable quantum-mechanical potentials by iteration of the free $V=0$ potential”, Nuovo Cimento B, 118 (2003), 535–546 ; arXiv: quant-ph/0311139 | DOI | MR
[7] Carnicer M.M., “The Poincaré problem in the nondicritical case”, Ann. of Math. (2), 140 (1994), 289–294 | DOI | MR | Zbl
[8] Cerveau D., Lins Neto A., “Holomorphic foliations in $\mathbf C\mathrm P(2)$ having an invariant algebraic curve”, Ann. Inst. Fourier (Grenoble), 41 (1991), 883–903 | DOI | MR
[9] Christopher C., Llibre J., “Algebraic aspects of integrability for polynomial systems”, Qual. Theory Dyn. Syst., 1 (1999), 71–95 | DOI | MR
[10] Christopher C., Llibre J., Pantazi Ch., Walcher S., “Inverse problems for invariant algebraic curves: explicit computations”, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 287–302 | DOI | MR | Zbl
[11] Christopher C., Llibre J., Pantazi Ch., Walcher S., “Inverse problems for multiple invariant curves”, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1197–1226 | DOI | MR | Zbl
[12] Christopher C., Llibre J., Pantazi Ch., Zhang X., “Darboux integrability and invariant algebraic curves for planar polynomial systems”, J. Phys. A: Math. Gen., 35 (2002), 2457–2476 | DOI | MR | Zbl
[13] Christopher C., Llibre J., Pereira J.V., “Multiplicity of invariant algebraic curves in polynomial vector fields”, Pacific J. Math., 229 (2007), 63–117 | DOI | MR | Zbl
[14] Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co. Inc., River Edge, NJ, 2001 | DOI | MR
[15] Darboux G., “Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré”, Bull. Sci. Math. (2), 2 (1878), 60–96, 123–144, 151–200 | Zbl
[16] Darboux G., “Sur une proposition relative aux équations linéaires”, Comptes Rendus Acad. Sci., 94 (1882), 1456–1459
[17] Darboux G., Théorie des Surfaces, II, Gauthier-Villars, Paris, 1889 | Zbl
[18] García I.A., Giacomini H., Giné J., “Generalized nonlinear superposition principles for polynomial planar vector fields”, J. Lie Theory, 15 (2005), 89–104 | MR | Zbl
[19] García I.A., Giné J., “Generalized cofactors and nonlinear superposition principles”, Appl. Math. Lett., 16 (2003), 1137–1141 | DOI | MR | Zbl
[20] Gendenshteïn L.E., “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359
[21] Giné J., Llibre J., “A family of isochronous foci with Darboux first integral”, Pacific J. Math., 218 (2005), 343–355 | DOI | MR | Zbl
[22] Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl
[23] Jouanolou J.P., Équations de Pfaff algébriques, Lecture Notes in Mathematics, 708, Springer, Berlin, 1979 | MR | Zbl
[24] Kalnins E.G., Kress J.M., Miller W., “Families of classical subgroup separable superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 092001, 8 pp. ; arXiv: 0912.3158 | DOI | MR | Zbl
[25] Kalnins E.G., Kress J.M., Miller W., “Superintegrability and higher order integrals for quantum systems”, J. Phys. A: Math. Theor., 43 (2010), 265205, 21 pp. ; arXiv: 1002.2665 | DOI | MR | Zbl
[26] Kaplansky I., An introduction to differential algebra, Hermann, Paris, 1957 | MR | Zbl
[27] Kolchin E.R., Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press, New York, 1973 | MR | Zbl
[28] Kovacic J.J., “An algorithm for solving second order linear homogeneous differential equations”, J. Symbolic Comput., 2 (1986), 3–43 | DOI | MR | Zbl
[29] Llibre J., “On the integrability of the differential systems in dimension two and of the polynomial differential systems in arbitrary dimension”, J. Appl. Anal. Comput., 1 (2011), 33–52
[30] Llibre J., Pantazi Ch., “Darboux theory of integrability for a class of nonautonomous vector fields”, J. Math. Phys., 50 (2009), 102705, 19 pp. | DOI | MR | Zbl
[31] Llibre J., Rodríguez G., “Configurations of limit cycles and planar polynomial vector fields”, J. Differential Equations, 198 (2004), 374–380 | DOI | MR | Zbl
[32] Llibre J., Zhang X., “Rational first integrals in the {D}arboux theory of integrability in $\mathbb C^n$”, Bull. Sci. Math., 134 (2010), 189–195 | DOI | MR | Zbl
[33] Maciejewski A.J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp. ; arXiv: 1004.3854 | DOI | MR | Zbl
[34] Nikiforov A.F., Uvarov V.B., Special functions of mathematical physics. A unified introduction with applications, Birkhäuser Verlag, Basel, 1988 | MR | Zbl
[35] Pantazi Ch., Inverse problems of the Darboux theory of integrability for planar polynomial differential systems, Ph.D. thesis, Universitat Autonoma de Barcelona, 2004
[36] Prelle M.J., Singer M.F., “Elementary first integrals of differential equations”, Trans. Amer. Math. Soc., 279 (1983), 215–229 | DOI | MR | Zbl
[37] Ramis J.P., Martinet J., “Théorie de {G}alois différentielle et resommation”, Computer Algebra and Differential Equations, Comput. Math. Appl., Academic Press, London, 1990, 117–214 | MR
[38] Schlomiuk D., “Algebraic particular integrals, integrability and the problem of the center”, Trans. Amer. Math. Soc., 338 (1993), 799–841 | DOI | MR | Zbl
[39] Singer M.F., “Liouvillian first integrals of differential equations”, Trans. Amer. Math. Soc., 333 (1992), 673–688 | DOI | MR | Zbl
[40] Spiridonov V., “Universal superpositions of coherent states and self-similar potentials”, Phys. Rev. A, 52 (1995), 1909–1935 ; arXiv: quant-ph/9601030 | DOI
[41] Teschl G., Mathematical methods in quantum mechanics. With applications to Schrödinger operators, Graduate Studies in Mathematics, 99, American Mathematical Society, Providence, RI, 2009 | MR | Zbl
[42] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp. ; arXiv: 0904.0738 | DOI | MR | Zbl
[43] van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | MR
[44] Weil J.A., Introduction to differential algebra and differential Galois theory, CIMPA-UNESCO Lectures, Hanoi, 2001
[45] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI
[46] Żoła̧dek H., “Polynomial Riccati equations with algebraic solutions”, Differential Galois Theory (Bȩdlewo, 2001), Banach Center Publ., 58, Polish Acad. Sci., Warsaw, 2002, 219–231 | DOI | MR