@article{SIGMA_2012_8_a40,
author = {David J. Fern\'andez},
title = {Harmonic oscillator {SUSY} partners and evolution loops},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a40/}
}
David J. Fernández. Harmonic oscillator SUSY partners and evolution loops. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a40/
[1] Adler V.E., “Nonlinear chains and {P}ainlevé equations”, Phys. D, 73 (1994), 335–351 | DOI | MR | Zbl
[2] Aharonov Y., Anandan J., “Phase change during a cyclic quantum evolution”, Phys. Rev. Lett., 58 (1987), 1593–1596 | DOI | MR
[3] Aizawa N., Sato H.T., “Isospectral Hamiltonians and $W_{1+\infty}$ algebra”, Progr. Theoret. Phys., 98 (1997), 707–718 ; arXiv: quant-ph/9601026 | DOI | MR
[4] Anandan J., Christian J., Wanelik K., “Resource letter GPP-1: geometric phases in physics”, Amer. J. Phys., 65 (1997), 180–185 ; arXiv: quant-ph/9702011 | DOI
[5] Andrianov A.A., Cannata F., “Nonlinear supersymmetry for spectral design in quantum mechanics”, J. Phys. A: Math. Gen., 37 (2004), 10297–10321 ; arXiv: hep-th/0407077 | DOI | MR | Zbl
[6] Andrianov A.A., Cannata F., Ioffe M.V., Nishnianidze D.N., “Systems with higher-order shape invariance: spectral and algebraic properties”, Phys. Lett. A, 266 (2000), 341–349 ; arXiv: quant-ph/9902057 | DOI | MR | Zbl
[7] Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.P., “Second order derivative supersymmetry, $q$-deformations and the scattering problem”, Internat. J. Modern Phys. A, 10 (1995), 2683–2702 ; arXiv: hep-th/9404061 | DOI | MR | Zbl
[8] Andrianov A.A., Ioffe M.V., Spiridonov V.P., “Higher-derivative supersymmetry and the Witten index”, Phys. Lett. A, 174 (1993), 273–279 ; arXiv: hep-th/9303005 | DOI | MR
[9] Ar{\i}k M., Atakishiyev N.M., Wolf K.B., “Quantum algebraic structures compatible with the harmonic oscillator Newton equation”, J. Phys. A: Math. Gen., 32 (1999), L371–L376 | DOI | MR | Zbl
[10] Bagchi B.K., Supersymmetry in quantum and classical mechanics, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 116, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | Zbl
[11] Bagrov V.G., Samsonov B.F., “Darboux transformation of the Schrödinger equation”, Phys. Part. Nuclei, 28 (1997), 374–397 | DOI | MR
[12] Baye D., Sparenberg J.M., “Inverse scattering with supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 37 (2004), 10223–10249 | DOI | MR | Zbl
[13] Bermúdez D., Fernández D.J., “Non-Hermitian Hamiltonians and the Painlevé IV equation with real parameters”, Phys. Lett. A, 375 (2011), 2974–2978 ; arXiv: 1104.3599 | DOI | MR
[14] Bermúdez D., Fernández D.J., “Supersymmetric quantum mechanics and Painlevé IV equation”, SIGMA, 7 (2011), 025, 14 pp. ; arXiv: 1012.0290 | DOI | MR | Zbl
[15] Berry M.V., “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. London Ser. A, 392 (1984), 45–57 | DOI | MR | Zbl
[16] Bohm A., Boya L.J., Kendrick B., “Derivation of the geometrical phase”, Phys. Rev. A, 43 (1991), 1206–1210 | DOI | MR
[17] Carballo J.M., Fernández D.J., Negro J., Nieto L.M., “Polynomial Heisenberg algebras”, J. Phys. A: Math. Gen., 37 (2004), 10349–10362 | DOI | MR | Zbl
[18] Cariñena J.F., Perelomov A.M., Rañada M.F., “Isochronous classical systems and quantum systems with equally spaced spectra”, J. Phys. Conf. Ser., 87 (2007), 012007, 14 pp. | DOI
[19] Chruściński D., Jamiołkowski A., Geometric phases in classical and quantum mechanics, Progress in Mathematical Physics, 36, Birkhäuser Boston Inc., Boston, MA, 2004 | DOI | MR | Zbl
[20] Contreras-Astorga A., Fernández D.J., “Supersymmetric partners of the trigonometric Pöschl–Teller potentials”, J. Phys. A: Math. Theor., 41 (2008), 475303, 18 pp. ; arXiv: 0809.2760 | DOI | MR | Zbl
[21] Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co. Inc., River Edge, NJ, 2001 | DOI | MR
[22] Correa F., Jakubský V., Nieto L.M., Plyushchay M.S., “Self-isospectrality, special supersymmetry, and their effect on the band structure”, Phys. Rev. Lett., 101 (2008), 030403, 4 pp. ; arXiv: 0801.1671 | DOI | MR | Zbl
[23] Daoud M., Kibler M.R., “Bosonic and $k$-fermionic coherent states for a class of polynomial Weyl–Heisenberg algebras”, J. Phys. A: Math. Theor., 45 (2012), 244036, 22 pp. ; arXiv: 1110.4799 | DOI | Zbl
[24] Daoud M., Kibler M.R., “Fractional supersymmetry and hierarchy of shape invariant potentials”, J. Math. Phys., 47 (2006), 122108, 11 pp. ; arXiv: quant-ph/0609017 | DOI | MR | Zbl
[25] Daoud M., Kibler M.R., “Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems”, J. Phys. A: Math. Theor., 43 (2010), 115303, 18 pp. ; arXiv: 1002.0955 | DOI | MR | Zbl
[26] Dong S.H., Factorization method in quantum mechanics, Fundamental Theories of Physics, 150, Springer, Dordrecht, 2007 | MR
[27] Dubov S.Y., Eleonsky V.M., Kulagin N.E., “Equidistant spectra of anharmonic oscillators”, Sov. Phys. JETP, 75 (1992), 446–451 | MR
[28] Emmanouilidou A., Zhao X.G., Ao P., Niu Q., “Steering an eigenstate to a destination”, Phys. Rev. Lett., 85 (2000), 1626–1629 | DOI
[29] Fernández D.J., “Bogdan Mielnik: contributions to quantum control”, Geometric Methods in Physics (XXX Workshop, Bialowieza, Poland, June 26 – July 2, 2011), eds. P. Kielanowski, S.T. Ali, A. Odzijewicz, M. Schlichenmaier, T. Voronov (to appear)
[30] Fernández D.J., “Geometric phases and Mielnik's evolution loops”, Int. J. Theor. Phys., 33 (1994), 2037–2047 ; arXiv: hep-th/9410213 | DOI | Zbl
[31] Fernández D.J., “Supersymmetric quantum mechanics”, AIP Conf. Proc., 1287 (2010), 3–36 ; arXiv: 0910.0192 | DOI
[32] Fernández D.J., “SUSUSY quantum mechanics”, Internat. J. Modern Phys. A, 12 (1997), 171–176 ; arXiv: quant-ph/9609009 | DOI | MR | Zbl
[33] Fernández D.J., “Transformations of a wave packet in a Penning trap”, Nuovo Cimento B, 107 (1992), 885–893 | DOI
[34] Fernández D.J., Fernández-García N., “Higher-order supersymmetric quantum mechanics”, AIP Conf. Proc., 744 (2005), 236–273 ; arXiv: quant-ph/0502098 | DOI | MR
[35] Fernández D.J., Hussin V., “Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states”, J. Phys. A: Math. Gen., 32 (1999), 3603–3619 | DOI | MR | Zbl
[36] Fernández D.J., Hussin V., Mielnik B., “A simple generation of exactly solvable anharmonic oscillators”, Phys. Lett. A, 244 (1998), 309–316 | DOI | MR | Zbl
[37] Fernández D.J., Mielnik B., “Controlling quantum motion”, J. Math. Phys., 35 (1994), 2083–2104 | DOI | MR
[38] Fernández D.J., Negro J., Nieto L.M., “Elementary systems with partial finite ladder spectra”, Phys. Lett. A, 324 (2004), 139–144 | DOI | Zbl
[39] Fernández D.J., Nieto L.M., del Olmo M.A., Santander M., “Aharonov–Anandan geometric phase for spin-$\frac12$ periodic Hamiltonians”, J. Phys. A: Math. Gen., 25 (1992), 5151–5163 | DOI | MR | Zbl
[40] Fernández D.J., Rosas-Ortiz O., “Inverse techniques and evolution of spin-$1/2$ systems”, Phys. Lett. A, 236 (1997), 275–279 | DOI | MR | Zbl
[41] Gangopadhyaya A., Mallow J.V., Rasinariu C., Supersymmetric quantum mechanics, World Scientific, Singapore, 2011 | Zbl
[42] Horváthy P.A., Plyushchay M.S., Valenzuela M., “Bosons, fermions and anyons in the plane, and supersymmetry”, Ann. Physics, 325 (2010), 1931–1975 ; arXiv: 1001.0274 | DOI | MR | Zbl
[43] Ioffe M.V., Nishnianidze D.N., “SUSY intertwining relations of third order in derivatives”, Phys. Lett. A, 327 (2004), 425–432 ; arXiv: hep-th/0404078 | DOI | MR | Zbl
[44] Lin Q.G., “Time evolution, cyclic solutions and geometric phases for general spin in an arbitrarily varying magnetic field”, J. Phys. A: Math. Gen., 36 (2003), 6799–6806 ; arXiv: quant-ph/0307099 | DOI | MR | Zbl
[45] Lin Q.G., “Time evolution, cyclic solutions and geometric phases for the generalized time-dependent harmonic oscillator”, J. Phys. A: Math. Gen., 37 (2004), 1345–1371 ; arXiv: quant-ph/0402159 | DOI | MR | Zbl
[46] Marquette I., “Superintegrability and higher order polynomial algebras”, J. Phys. A: Math. Theor., 43 (2010), 135203, 15 pp. ; arXiv: 0908.4399 | DOI | MR | Zbl
[47] Mateo J., Negro J., “Third-order differential ladder operators and supersymmetric quantum mechanics”, J. Phys. A: Math. Theor., 41 (2008), 045204, 28 pp. | DOI | MR | Zbl
[48] Mielnik B., “Evolution loops”, J. Math. Phys., 27 (1986), 2290–2306 | DOI | MR | Zbl
[49] Mielnik B., “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl
[50] Mielnik B., “Global mobility of Schrödinger's particle”, Rep. Math. Phys., 12 (1977), 331–339 | DOI | MR
[51] Mielnik B., “Space echo”, Lett. Math. Phys., 12 (1986), 49–56 | DOI | MR
[52] Mielnik B., Nieto L.M., Rosas-Ortiz O., “The finite difference algorithm for higher order supersymmetry”, Phys. Lett. A, 269 (2000), 70–78 ; arXiv: quant-ph/0004024 | DOI | MR | Zbl
[53] Mielnik B., Ramírez A., “Ion traps: some semiclassical observations”, Phys. Scr., 82 (2010), 055002, 13 pp. | DOI | Zbl
[54] Mielnik B., Ramírez A., “Magnetic operations: a little fuzzy mechanics?”, Phys. Scr., 84 (2011), 045008, 17 pp. ; arXiv: 1006.1944 | DOI
[55] Mielnik B., Rosas-Ortiz O., “Factorization: little or great algorithm?”, J. Phys. A: Math. Gen., 37 (2004), 10007–10035 | DOI | MR | Zbl
[56] Mostafazadeh A., Dinamical invariants, adiabatic approximation and the geometric phase, Nova Science Publishers Inc., New York, 1992
[57] Plyushchay M.S., “Deformed Heisenberg algebra with reflection”, Nuclear Phys. B, 491 (1997), 619–634 ; arXiv: hep-th/9701091 | DOI | MR | Zbl
[58] Shapere A., Wilczek F. (Editors), Geometric phases in physics, Advanced Series in Mathematical Physics, 5, World Scientific Publishing Co. Inc., Teaneck, NJ, 1989 | MR | Zbl
[59] Sukumar C.V., “Supersymmetric quantum mechanics and its applications”, AIP Conf. Proc., 744 (2005), 166–235 | DOI | MR
[60] Veselov A.P., Shabat A.B., “Dressing chains and the spectral theory of the Schrödinger operator”, Func. Anal. Appl., 27 (1993), 81–96 | DOI | MR | Zbl