Entropy of quantum black holes
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the Loop Quantum Gravity, black holes (or even more general Isolated Horizons) are described by a $SU(2)$ Chern–Simons theory. There is an equivalent formulation of the horizon degrees of freedom in terms of a $U(1)$ gauge theory which is just a gauged fixed version of the $SU(2)$ theory. These developments will be surveyed here. Quantum theory based on either formulation can be used to count the horizon micro-states associated with quantum geometry fluctuations and from this the micro-canonical entropy can be obtained. We shall review the computation in $SU(2)$ formulation. Leading term in the entropy is proportional to horizon area with a coefficient depending on the Barbero–Immirzi parameter which is fixed by matching this result with the Bekenstein–Hawking formula. Remarkably there are corrections beyond the area term, the leading one is logarithm of the horizon area with a definite coefficient $-3/2$, a result which is more than a decade old now. How the same results are obtained in the equivalent $U(1)$ framework will also be indicated. Over years, this entropy formula has also been arrived at from a variety of other perspectives. In particular, entropy of BTZ black holes in three dimensional gravity exhibits the same logarithmic correction. Even in the String Theory, many black hole models are known to possess such properties. This suggests a possible universal nature of this logarithmic correction.
Keywords: black holes, micro-canonical entropy, topological field theories; $SU(2)$ Chern–Simons theory, Isolated Horizons, Bekenstein–Hawking formula, logarithmic correction, Barbero–Immirzi parameter, conformal field theories, Cardy formula, BTZ black hole, canonical entropy.
@article{SIGMA_2012_8_a4,
     author = {Romesh K. Kaul},
     title = {Entropy of quantum black holes},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a4/}
}
TY  - JOUR
AU  - Romesh K. Kaul
TI  - Entropy of quantum black holes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a4/
LA  - en
ID  - SIGMA_2012_8_a4
ER  - 
%0 Journal Article
%A Romesh K. Kaul
%T Entropy of quantum black holes
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a4/
%G en
%F SIGMA_2012_8_a4
Romesh K. Kaul. Entropy of quantum black holes. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a4/

[1] Bekenstein J., “Black holes and entropy”, Phys. Rev. D, 7 (1973), 2333–2346 ; Bekenstein J., “Generalized second law of thermodynamics in black hole physics”, Phys. Rev. D, 9 (1974), 3292–3300 ; Bardeen J.M., Carter B., Hawking S.W., “The four laws of black hole mechanics”, Comm. Math. Phys., 31 (1973), 161–170 ; Hawking S.W., “Particle creation by black holes”, Comm. Math. Phys., 43 (1975), 199–220 ; Page D., “Particle emission rates from a black hole: massless particles from an uncharged, non-rotating hole”, Phys. Rev. D, 13 (1976), 198–206 ; Unruh W.G., “Notes on black-hole evaporation”, Phys. Rev. D, 14 (1976), 870–892 | DOI | MR | DOI | DOI | MR | Zbl | DOI | MR | DOI | DOI

[2] Ashtekar A., Beetle C., Dreyer O., Fairhurst S., Krishnan B., Lewandowski J., Wiśniewski J., “Generic isolated horizons and their applications”, Phys. Rev. Lett., 85 (2000), 3564–3567, arXiv: gr-qc/0006006 | DOI | MR

[3] Kaul R.K., Majumdar P., “Schwarzschild horizon dynamics and SU(2) Chern–Simons theory”, Phys. Rev. D, 83 (2011), 024038, 10 pp., arXiv: 1004.5487 | DOI

[4] Birmingham D., Blau M., Rakowski M., Thompson G., “Topological field theory”, Phys. Rep., 209 (1991), 129–340 | DOI | MR

[5] Kaul R.K., Govindarajan T.R., Ramadevi P., “Schwarz type topological quantum field theories”, Encyclopedia of Mathematical Physics, Elsevier, Amsterdam, 2006, 494–503 ; arXiv: hep-th/0504100 | DOI

[6] Rovelli C., Quantum Gravity, Cambridge University Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 ; Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152, arXiv: ; Theimann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 ; Sahlmann H., Loop quantum gravity – a short review, arXiv: gr-qc/04040181001.4188 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR

[7] Basu R., Kaul R.K., Majumdar P., “Entropy of isolated horizons revisited”, Phys. Rev. D, 82 (2010), 024007, 5 pp. ; arXiv: 0907.0846 | DOI | MR

[8] Engle J., Noui K., Perez A., “Black hole entropy and $SU(2)$ Chern–Simons theory”, Phys. Rev. Lett., 105 (2010), 031302, 4 pp., arXiv: 0905.3168 | DOI | MR

[9] Ashtekar A., Baez J., Corichi A., Krasnov K., “Quantum geometry and black hole entropy”, Phys. Rev. Lett., 80 (1998), 904–907, arXiv: ; Ashtekar A., Corichi A., Krasnov K., “Isolated horizons: the classical phase space”, Adv. Theor. Math. Phys., 3 (2000), 419–478, arXiv: ; Ashtekar A., Baez J., Krasnov K., “Quantum geometry of isolated horizons and black hole entropy”, Adv. Theor. Math. Phys., 4 (2000), 1–94, arXiv: gr-qc/9710007gr-qc/9905089gr-qc/0005126 | DOI | MR | Zbl | MR | MR | Zbl

[10] Smolin L., “Linking topological quantum field theory and nonperturbative quantum gravity”, J. Math. Phys., 36 (1995), 6417–6455 ; arXiv: gr-qc/9505028 | DOI | MR | Zbl

[11] Krasnov K.V., “On quantum statistical mechanics of Schwarzschild black hole”, Gen. Relativity Gravitation, 30 (1998), 53–68 ; arXiv: gr-qc/9605047 | DOI | MR | Zbl

[12] Rovelli C., “Black hole entropy from loop quantum gravity”, Phys. Rev. Lett., 77 (1996), 3288–3291 ; arXiv: gr-qc/9603063 | DOI | MR | Zbl

[13] Kaul R.K., Majumdar P., “Quantum black hole entropy”, Phys. Lett. B, 439 (1998), 267–270 ; arXiv: gr-qc/9801080 | DOI | MR

[14] Kaul R.K., Majumdar P., “Logarithmic correction to the Bekenstein–Hawking entropy”, Phys. Rev. Lett., 84 (2000), 5255–5257 ; arXiv: gr-qc/0002040 | DOI | MR

[15] Das S., Kaul R.K., Majumdar P., “A new holographic entropy bound from quantum geometry”, Phys. Rev. D, 63 (2001), 044019, 4 pp. ; arXiv: hep-th/0006211 | DOI | MR

[16] Kaul R.K., Kalyana Rama S., “Black hole entropy from spin one punctures”, Phys. Rev. D, 68 (2003), 024001, 4 pp. ; arXiv: gr-qc/0301128 | DOI | MR

[17] Fursaev D.V., “Temperature and entropy of a quantum black hole and conformal anomaly”, Phys. Rev. D, 51 (1995), R5352–R5355, arXiv: ; Mann R.B., Solodukhin S.N., “Universality of quantum entropy for extreme black holes”, Nuclear Phys. B, 523 (1998), 293–307, arXiv: hep-th/9412161hep-th/9709064 | DOI | MR | DOI | MR | Zbl

[18] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl

[19] Witten E., “On holomorphic factorization of WZW and coset models”, Comm. Math. Phys., 144 (1992), 189–212 ; Blau M., Thompson G., “Derivation of the Verlinde formula from Chern–Simons theory and the G/G model”, Nuclear Phys. B, 408 (1993), 345–390, arXiv: hep-th/9305010 | DOI | MR | Zbl | DOI | MR | Zbl

[20] Kaul R.K., “Chern–Simons theory, colored-oriented braids and link invariants”, Comm. Math. Phys., 162 (1994), 289–320, arXiv: ; Kaul R.K., “Chern–Simons theory, knot invariants, vertex models and three manifold invariants”, Frontiers of Field Theory, Quantum Gravity and Strings, Horizons in World Physics, 227, Nova Science Publishers, New York, 1999, 45–63, arXiv: ; Kaul R.K., Ramadevi P., “Three-manifold invariants from Chern–Simons field theory with arbitrary semi-simple gauge groups”, Comm. Math. Phys., 217 (2001), 295–314, arXiv: hep-th/9305032hep-th/9804122hep-th/0005096 | DOI | MR | DOI | MR | Zbl

[21] Di Francesco P., Mathieu P., Senechal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Berlin, 1997 | DOI | MR

[22] Livine E.R., Terno D.R.,, “Quantum black holes: entropy and entanglement on the horizon”, Nuclear Phys. B, 741 (2006), 131–161, arXiv: gr-qc/0508085 | DOI | MR | Zbl

[23] Domagala M., Lewandowski J., “Black-hole entropy from quantum geometry”, Classical Quantum Gravity, 21 (2004), 5233–5243, arXiv: ; Meissner K.A., “Black-hole entropy in loop quantum gravity”, Classical Quantum Gravity, 21 (2004), 5245–5251, arXiv: ; Khriplovich I.B., Quantized black holes, correspondence principle, and holographic bound, arXiv: gr-qc/0407051gr-qc/0407052gr-qc/0409031 | DOI | MR | Zbl | DOI | MR | Zbl

[24] Ghosh A., Mitra P., “An improved lower bound on black hole entropy in the quantum geometry approach”, Phys. Lett. B, 616 (2005), 114–117 ; arXiv: gr-qc/0411035 | DOI | MR

[25] Aref'eva I.Ya., “Non-Abelian Stokes theorem”, Theoret. and Math. Phys., 43 (1980), 353–356 | DOI | MR

[26] Sahlmann H., Thiemann T., “Chern–Simons theory, Stokes' theorem, and the Duflo map”, J. Geom. Phys., 61 (2011), 1104–1121, arXiv: ; Sahlmann H., Thiemann T., Chern–Simons expectation values and quantum horizons from LQG and the Duflo map,, arXiv: arXiv:1101.16901109.5793 | DOI | MR | Zbl

[27] Duflo M., “Opérateurs differéntiels bi-invariants sur un groupe de Lie”, Ann. Sci. École Norm. Sup. (4), 10 (1977), 265–288 | MR | Zbl

[28] Carlip S., “Logarithmic corrections to black hole entropy from the Cardy formula”, Classical Quantum Gravity, 17 (2000), 4175–4186 ; arXiv: gr-qc/0005017 | DOI | MR | Zbl

[29] Cardy J.L., “Operator content of two-dimensional conformally invariant theories”, Nuclear Phys. B, 270 (1986), 186–204 | DOI | MR | Zbl

[30] Brown J.D., Henneaux M., “Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity”, Comm. Math. Phys., 104 (1986), 207–226 ; Larsen F., “A string model of black hole microstates”, Phys. Rev. D, 56 (1997), 1005–1008, arXiv: ; Maldacena J.M., Strominger A., “Universal low-energy dynamics for rotating black holes”, Phys. Rev. D, 56 (1997), 4975–4983, arXiv: hep-th/9702153hep-th/9702015 | DOI | MR | Zbl | DOI | MR | DOI | MR

[31] Strominger A., Vafa C., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys. Lett. B, 379 (1996), 99–104, arXiv: hep-th/9601029 | DOI | MR

[32] Birmingham D., Sen S., “An exact black hole entropy bound”, Phys. Rev. D, 63 (2001), 047501, 3 pp., arXiv: hep-th/0008051 | DOI | MR

[33] Govindarajan T.R,, Kaul R.K., Suneeta V., “Logarithmic correction to the Bekenstein–Hawking entropy of the BTZ black hole”, Classical Quantum Gravity, 18 (2001), 2877–2885, arXiv: gr-qc/0104010 | DOI | MR | Zbl

[34] Achúcarro A., Towensend P.K., “A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories”, Phys. Lett. B, 180 (1986), 89–92 ; Witten E., “$(2+1)$-dimensional gravity as an exactly soluble system”, Nuclear Phys. B, 311 (1988), 46–78 ; Carlip S., “Entropy from conformal field theory at Killing horizons”, Classical Quantum Gravity, 16 (1999), 3327–3348 ; arXiv: gr-qc/9906126 | DOI | MR | DOI | MR | DOI | MR | Zbl

[35] Carlip S., Teitelboim C., “Aspects of black hole quantum mechanics and thermodynamics in $2+1$ dimensions”, Phys. Rev. D, 51 (1995), 622–631 ; arXiv: gr-qc/9405070 | DOI | MR

[36] Labastida J.M.F., Ramallo A.V., “Operator formalism for Chern–Simons theories”, Phys. Lett. B, 227 (1989), 92–102 ; Isidro J.M., Labastida J.M.F., Ramallo A.V., “Polynomials for torus links from Chern–Simons gauge theories”, Nuclear Phys. B, 398 (1993), 187–236, arXiv: ; Hayashi N., “Quantum Hilbert space of $G_C$ Chern–Simons–Witten theory and gravity”, Prog. Theor. Phys. Suppl., 1993, no. 114, 125–147 hep-th/9210124 | DOI | MR | DOI | MR | DOI | MR

[37] Carlip S., “The statistical mechanics of the three-dimensional Euclidean black hole”, Phys. Rev. D, 55 (1997), 878–882, arXiv: ; Suneeta V., Kaul R.K., Govindarajan T.R., “BTZ black hole entropy from Ponzano–Regge gravity”, Modern Phys. Lett. A, 14 (1999), 349–358, arXiv: gr-qc/9606043gr-qc/9811071 | DOI | MR | DOI | MR

[38] Govindarajan T.R., Kaul R.K., Suneeta V., “Quantum gravity on $dS_3$”, Classical Quantum Gravity, 19 (2002), 4195–4205 ; arXiv: hep-th/0203219 | DOI | MR | Zbl

[39] 't Hooft G., “The black hole interpretation of string theory”, Nuclear Phys. B, 335 (1990), 138–154 | DOI | MR

[40] Susskind L., Some speculations about black hole entropy in string theory, arXiv: hep-th/9309145

[41] Halyo E., Rajaraman A., Susskind L., “Braneless black holes”, Phys. Lett. B, 392 (1997), 319–322, arXiv: ; Halyo E., Kol B., Rajaraman A., Susskind L., “Counting Schwarzschild and charged black holes”, Phys. Lett. B, 401 (1997), 15–20, arXiv: ; Horowitz G.T., Polchinski J., “A correspondence principle for black holes and strings”, Phys. Rev. D, 55 (1997), 6189–6197, arXiv: ; Damour T., Veneziano G., “Selfgravitating fundamental strings and black holes”, Nuclear Phys. B, 568 (2000), 93–119, arXiv: ; Halyo E., “Universal counting of black hole entropy by strings on the stretched horizon”, J. High Energy Phys., 2001:12 (2001), 005, 15 pp., arXiv: hep-th/9605112hep-th/9609075hep-th/9612146hep-th/9907030hep-th/0108167 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR

[42] Kaul R.K., “Black hole entropy from a highly excited elementary string”, Phys. Rev. D, 68 (2003), 024026, 4 pp. ; arXiv: hep-th/0302170 | DOI | MR

[43] Kalyana Rama S., “Asymptotic density of open $p$-brane states with zero-modes included”, Phys. Lett. B, 566 (2003), 152–156 ; arXiv: hep-th/0304152 | DOI | Zbl

[44] Gour G., “Algebraic approach to quantum black holes: logarithmic corrections to black hole entropy”, Phys. Rev. D, 66 (2002), 104022, 8 pp., arXiv: ; Gupta K.S., Sen S., “Further evidence for the conformal structure of a Schwarzschild black hole in an algebraic approach”, Phys. Lett. B, 526 (2002), 121–126, arXiv: ; Bianchi E., “Black hole entropy, loop gravity, and polymer physics”, Classical Quantum Gravity, 28 (2011), 114006, 12 pp., arXiv: gr-qc/0210024hep-th/01120411011.5628 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[45] Davidson A.,, Holographic shell model: stack data structure inside black holes, arXiv: 1108.2650

[46] Agulló I., Barbero G. J.F., Borja E.F., Diaz-Polo J., Villaseñor E.J.S., “Combinatorics of the $SU(2)$ black hole entropy in loop quantum gravity”, Phys. Rev. D, 80 (2009), 084006, 3 pp., arXiv: ; Agulló I., Barbero G. J.F., Borja E.F., Diaz-Polo J., Villaseñor E.J.S., “Detailed black hole state counting in loop quantum gravity”, Phys. Rev. D, 82 (2010), 084029, 31 pp., arXiv: ; Engle J., Noui K., Perez A., Pranzetti D., “The $SU(2)$ black hole entropy revisited”, J. High Energy Phys., 2011:05 (2011), 016, 30 pp., arXiv: 0906.45291101.36601103.2723 | DOI | MR | DOI | DOI

[47] Freidel L., Livine E.R., “The fine structure of $SU(2)$ intertwiners from $U(N)$ representations”, J. Math. Phys., 51 (2010), 082502, 19 pp. ; arXiv: 0911.3553 | DOI | MR

[48] Sahlmann H., “Black hole horizons from within loop quantum gravity”, Phys. Rev. D, 84 (2011), 044049, 12 pp. ; arXiv: 1104.4691 | DOI

[49] Krasnov K., Rovelli C., “Black holes in full quantum gravity”, Classical Quantum Gravity, 26 (2009), 245009, 8 pp. ; arXiv: 0905.4916 | DOI | MR | Zbl

[50] Agulló I., Barbero G. J.F., Díaz-Polo J., Borja E.F., Villaseñor E.J.S., “Black hole state counting in LQG: a number theoretical approach”, Phys. Rev. Lett., 100 (2008), 211301, 4 pp., arXiv: ; Barbero G. J.F., Villaseñor E.J.S., “Generating functions for black hole entropy in loop quantum gravity”, Phys. Rev. D, 77 (2008), 121502, 5 pp., arXiv: ; Barbero G.J.F., Villaseñor E.J.S., “On the computation of black hole entropy in loop quantum gravity”, Classical Quantum Gravity, 26 (2009), 035017, 22 pp., arXiv: 0802.40770804.47840810.1599 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[51] Caravelli F., Modesto L., “Holographic actions from black hole entropy”, Phys. Lett. B, 702 (2011), 307–311 ; arXiv: 1001.4364 | DOI

[52] Das S., Majumdar P., Bhaduri R.K., “General logarithmic corrections to black hole entropy”, Classical Quantum Gravity, 19 (2002), 2355–2367 ; arXiv: hep-th/0111001 | DOI | MR | Zbl

[53] Gour G., Medved A.J.M., “Thermal fluctuations and black hole entropy”, Classical Quantum Gravity, 20 (2003), 3307–3326 ; arXiv: gr-qc/0305018 | DOI | MR | Zbl

[54] Chatterjee A., Majumdar P., “Universal canonical black hole entropy”, Phys. Rev. Lett., 92 (2004), 141301, 4 pp., arXiv: ; Chatterjee A., Majumdar P., “Universal criterion for black hole stability”, Phys. Rev. D, 72 (2005), 044005, 3 pp., arXiv: ; Majumdar P., “Generalized Hawking–Page phase transition”, Classical Quantum Gravity, 24 (2007), 1747–1753, arXiv: gr-qc/0309026gr-qc/0504064gr-qc/0701014 | DOI | MR | DOI | MR | DOI | MR | Zbl

[55] Easson D.A., Frampton P.H., Smoot G.F., Entropic inflation, arXiv: 1003.1528