The vertex algebra $m(1)^+$ and certain affine vertex algebras of level $-1$
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a coset realization of the vertex operator algebra $M(1)^+$ with central charge $\ell$. We realize $M(1)^+$ as a commutant of certain affine vertex algebras of level $-1$ in the vertex algebra $L_{C_{\ell}^{(1)}}(-\frac12\Lambda_0)\otimes L_{C_{\ell} ^{(1)}}(-\frac{1}{2}\Lambda_0)$. We show that the simple vertex algebra $L_{C_{\ell}^{(1)}}(-\Lambda_0)$ can be (conformally) embedded into $L_{A_{2 \ell -1}^{(1)}}(-\Lambda_0)$ and find the corresponding decomposition. We also study certain coset subalgebras inside $L_{C_{\ell} ^{(1)}}(-\Lambda_0)$.
Keywords: vertex operator algebra, affine Kac–Moody algebra, coset vertex algebra, conformal embedding, $\mathcal W$-algebra.
@article{SIGMA_2012_8_a39,
     author = {Dra\v{z}en Adamovi\'c and Ozren Per\v{s}e},
     title = {The vertex algebra $m(1)^+$ and certain affine vertex algebras of level $-1$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a39/}
}
TY  - JOUR
AU  - Dražen Adamović
AU  - Ozren Perše
TI  - The vertex algebra $m(1)^+$ and certain affine vertex algebras of level $-1$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a39/
LA  - en
ID  - SIGMA_2012_8_a39
ER  - 
%0 Journal Article
%A Dražen Adamović
%A Ozren Perše
%T The vertex algebra $m(1)^+$ and certain affine vertex algebras of level $-1$
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a39/
%G en
%F SIGMA_2012_8_a39
Dražen Adamović; Ozren Perše. The vertex algebra $m(1)^+$ and certain affine vertex algebras of level $-1$. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a39/

[1] Adamović D., “A construction of some ideals in affine vertex algebras”, Int. J. Math. Math. Sci., 2003, 971–980 ; arXiv: math.QA/0103006 | DOI | MR | Zbl

[2] Adamović D., “Some rational vertex algebras”, Glas. Mat. Ser. III, 29(49) (1994), 25–40 ; arXiv: q-alg/9502015 | MR | Zbl

[3] Adamović D., Milas A., “On the triplet vertex algebra $\mathcal W(p)$”, Adv. Math., 217 (2008), 2664–2699 ; arXiv: 0707.1857 | DOI | MR | Zbl

[4] Adamović D., Milas A., “The $N=1$ triplet vertex operator superalgebras”, Comm. Math. Phys., 288 (2009), 225–270 ; arXiv: 0712.0379 | DOI | MR | Zbl

[5] Adamović D., Milas A., “Vertex operator algebras associated to modular invariant representations for $A^{(1)}_1$”, Math. Res. Lett., 2 (1995), 563–575 ; arXiv: q-alg/9509025 | MR | Zbl

[6] Adamović D., Perše O., Fusion rules and complete reducibility of certain modules for affine Lie algebras, in preparation

[7] Adamović D., Perše O., “On coset vertex algebras with central charge 1”, Math. Commun., 15 (2010), 143–157 | MR | Zbl

[8] Adamović D., Perše O., “Representations of certain non-rational vertex operator algebras of affine type”, J. Algebra, 319 (2008), 2434–2450 ; arXiv: math.QA/0702018 | DOI | MR | Zbl

[9] Arakawa T., “Representation theory of $\mathcal W$-algebras”, Invent. Math., 169 (2007), 219–320 ; arXiv: math.QA/0506056 | DOI | MR | Zbl

[10] Borcherds R.E., “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR | Zbl

[11] Bourbaki N., Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie, Actualités Scientifiques et Industrielles, 1364, Hermann, Paris, 1975 | MR | Zbl

[12] Dong C., Griess R.L., “Rank one lattice type vertex operator algebras and their automorphism groups”, J. Algebra, 208 (1998), 262–275 ; arXiv: q-alg/9710017 | DOI | MR | Zbl

[13] Dong C., Lam C.H., Yamada H., “$\mathcal W$-algebras related to parafermion algebras”, J. Algebra, 322 (2009), 2366–2403 ; arXiv: 0809.3630 | DOI | MR | Zbl

[14] Dong C., Mason G., “On quantum Galois theory”, Duke Math. J., 86 (1997), 305–321 ; arXiv: hep-th/9412037 | DOI | MR | Zbl

[15] Dong C., Nagatomo K., “Classification of irreducible modules for the vertex operator algebra $M(1)^+$”, J. Algebra, 216 (1999), 384–404 ; arXiv: math.QA/9806051 | DOI | MR | Zbl

[16] Dong C., Nagatomo K., “Classification of irreducible modules for the vertex operator algebra $M(1)^+$. II. Higher rank”, J. Algebra, 240 (2001), 289–325 ; arXiv: math.QA/9905064 | DOI | MR | Zbl

[17] Feingold A.J., Frenkel I.B., “Classical affine algebras”, Adv. Math., 56 (1985), 117–172 | DOI | MR | Zbl

[18] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, American Mathematical Society, Providence, RI, 2001 | MR | Zbl

[19] Frenkel I.B., Huang Y.Z., Lepowsky J., On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104, no. 494, 1993 | MR

[20] Frenkel I.B., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press Inc., Boston, MA, 1988 | DOI | MR | Zbl

[21] Frenkel I.B., Zhu Y., “Vertex operator algebras associated to representations of affine and Virasoro algebras”, Duke Math. J., 66 (1992), 123–168 | DOI | MR | Zbl

[22] Goddard P., Kent A., Olive D., “Virasoro algebras and coset space models”, Phys. Lett. B, 152 (1985), 88–92 | DOI | MR | Zbl

[23] Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR

[24] Kac V.G., Vertex algebras for beginners, University Lecture Series, 10, 2nd ed., American Mathematical Society, Providence, RI, 1998 | MR

[25] Kac V.G., Wakimoto M., “Modular invariant representations of infinite-dimensional Lie algebras and superalgebras”, Proc. Nat. Acad. Sci. USA, 85 (1988), 4956–4960 | DOI | MR | Zbl

[26] Kac V.G., Wakimoto M., “On rationality of $W$-algebras”, Transform. Groups, 13 (2008), 671–713 ; arXiv: 0711.2296 | DOI | MR | Zbl

[27] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston Inc., Boston, MA, 2004 | DOI | MR | Zbl

[28] Li H.S., “Local systems of vertex operators, vertex superalgebras and modules”, J. Pure Appl. Algebra, 109 (1996), 143–195 ; arXiv: hep-th/9406185 | DOI | MR | Zbl

[29] Meurman A., Primc M., Annihilating fields of standard modules of $\mathfrak{sl}(2,\mathbb C)^\sim$ and combinatorial identities, Mem. Amer. Math. Soc., 137, no. 652, 1999 | MR

[30] Perše O., “Vertex operator algebras associated to certain admissible modules for affine Lie algebras of type $A$”, Glas. Mat. Ser. III, 43(63) (2008), 41–57 ; arXiv: 0707.4129 | DOI | MR | Zbl

[31] Perše O., “Vertex operator algebras associated to type $B$ affine Lie algebras on admissible half-integer levels”, J. Algebra, 307 (2007), 215–248 ; arXiv: math.QA/0512129 | DOI | MR | Zbl