@article{SIGMA_2012_8_a38,
author = {Jasper V. Stokman},
title = {Some remarks on very-well-poised ${}_8\phi_7$ series},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a38/}
}
Jasper V. Stokman. Some remarks on very-well-poised ${}_8\phi_7$ series. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a38/
[1] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985 | MR
[2] van de Bult F.J., “Ruijsenaars' hypergeometric function and the modular double of $\mathcal U_q(\mathfrak{sl}_2(\mathbb C))$”, Adv. Math., 204 (2006), 539–571 ; arXiv: math.QA/0501405 | DOI | MR | Zbl
[3] van de Bult F.J., Rains E.M., Stokman J.V., “Properties of generalized univariate hypergeometric functions”, Comm. Math. Phys., 275 (2007), 37–95 ; arXiv: math.CA/0607250 | DOI | MR | Zbl
[4] Chalykh O.A., “Macdonald polynomials and algebraic integrability”, Adv. Math., 166 (2002), 193–259 ; arXiv: math.QA/0212313 | DOI | MR | Zbl
[5] Chalykh O.A., Etingof P., Orthogonality relations and Cherednik identities for multivariable Baker–Akhiezer functions, arXiv: 1111.0515
[6] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[7] Gupta D.P., Masson D.R., “Contiguous relations, continued fractions and orthogonality”, Trans. Amer. Math. Soc., 350 (1998), 769–808 ; arXiv: math.CA/9511218 | DOI | MR | Zbl
[8] Haine L., Iliev P., “Askey–Wilson type functions with bound states”, Ramanujan J., 11 (2006), 285–329 ; arXiv: math.QA/0203136 | DOI | MR | Zbl
[9] Ismail M.E.H., Rahman M., “The associated Askey–Wilson polynomials”, Trans. Amer. Math. Soc., 328 (1991), 201–237 | DOI | MR | Zbl
[10] Koelink E., Stokman J.V., “The Askey–Wilson function transform”, Int. Math. Res. Not., 2001, no. 22, 1203–1227 ; arXiv: math.CA/0004053 | DOI | MR | Zbl
[11] Koelink E., Stokman J.V., “Fourier transforms on the quantum $\mathrm{SU}(1,1)$ group”, Publ. Res. Inst. Math. Sci., 37 (2001), 621–715 ; arXiv: math.QA/9911163 | DOI | MR | Zbl
[12] Koornwinder T., Comment on the paper “Macdonald polynomials and algebraic integrability” by O.A. Chalykh available at http://staff.science.uva.nl/~thk/art/comment/ChalykhComment.pdf
[13] Letzter G., Stokman J.V., “Macdonald difference operators and Harish-Chandra series”, Proc. Lond. Math. Soc. (3), 97 (2008), 60–96 ; arXiv: math.QA/0701218 | DOI | MR | Zbl
[14] van Meer M., “Bispectral quantum Knizhnik–Zamolodchikov equations for arbitrary root systems”, Selecta Math. (N.S.), 17 (2011), 183–221 ; arXiv: 0912.3784 | DOI | MR | Zbl
[15] van Meer M., Stokman J., “Double affine Hecke algebras and bispectral quantum Knizhnik–Zamolodchikov equations”, Int. Math. Res. Not., 2010, no. 6, 969–1040 ; arXiv: 0812.1005 | DOI | MR | Zbl
[16] Noumi M., Stokman J.V., “Askey–Wilson polynomials: an affine Hecke algebra approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 111–144 ; arXiv: math.QA/0001033 | MR | Zbl
[17] Rahman M., “The linearization of the product of continuous $q$-Jacobi polynomials”, Canad. J. Math., 33 (1981), 961–987 | DOI | MR | Zbl
[18] Rahman M., Verma A., “Quadratic transformation formulas for basic hypergeometric series”, Trans. Amer. Math. Soc., 335 (1993), 277–302 | DOI | MR | Zbl
[19] Ruijsenaars S.N.M., “A generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type”, Comm. Math. Phys., 206 (1999), 639–690 | DOI | MR | Zbl
[20] Ruijsenaars S.N.M., “Quadratic transformations for a function that generalizes ${}_2F_1$ and the Askey–Wilson polynomials”, Ramanujan J., 13 (2007), 339–364 | DOI | MR | Zbl
[21] Sauloy J., “Systèmes aux $q$-différences singuliers réguliers: classification, matrice de connexion et monodromie”, Ann. Inst. Fourier (Grenoble), 50 (2000), 1021–1071 | DOI | MR | Zbl
[22] Singh V.N., “The basic analogues of identities of the Cayley–Orr type”, J. London Math. Soc., 34 (1959), 15–22 | DOI | MR | Zbl
[23] Slater L.J., “A note on equivalent product theorems”, Math. Gaz., 38 (1954), 127–128 | DOI
[24] Stokman J.V., “An expansion formula for the Askey–Wilson function”, J. Approx. Theory, 114 (2002), 308–342 ; arXiv: math.CA/0105093 | DOI | MR | Zbl
[25] Stokman J.V., The $c$-function expansion of a basic hypergeometric function associated to root systems, arXiv: 1109.0613
[26] Suslov S.K., “Some orthogonal very-well-poised ${}_8\phi_7$-functions that generalize Askey–Wilson polynomials”, Ramanujan J., 5 (2001), 183–218 ; arXiv: math.CA/9707213 | DOI | MR | Zbl