@article{SIGMA_2012_8_a35,
author = {Johan W. van de Leur and Alexander Yu. Orlov and Takahiro Shiota},
title = {CKP hierarchy, bosonic tau function and bosonization formulae},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a35/}
}
TY - JOUR AU - Johan W. van de Leur AU - Alexander Yu. Orlov AU - Takahiro Shiota TI - CKP hierarchy, bosonic tau function and bosonization formulae JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a35/ LA - en ID - SIGMA_2012_8_a35 ER -
%0 Journal Article %A Johan W. van de Leur %A Alexander Yu. Orlov %A Takahiro Shiota %T CKP hierarchy, bosonic tau function and bosonization formulae %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a35/ %G en %F SIGMA_2012_8_a35
Johan W. van de Leur; Alexander Yu. Orlov; Takahiro Shiota. CKP hierarchy, bosonic tau function and bosonization formulae. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a35/
[1] Aratyn H., van de Leur J.W., “The CKP hierarchy and the WDVV prepotential”, Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete, NATO Sci. Ser. II Math. Phys. Chem., 201, Springer, Dordrecht, 2006, 1–11 ; arXiv: nlin.SI/0302004 | DOI | MR | Zbl
[2] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. III. Operator approach to the Kadomtsev–Petviashvili equation”, J. Phys. Soc. Japan, 50 (1981), 3806–3812 | DOI | MR | Zbl
[3] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. VI. KP hierarchies of orthogonal and symplectic type”, J. Phys. Soc. Japan, 50 (1981), 3813–3818 | DOI | MR | Zbl
[4] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), World Sci. Publishing, Singapore, 1983, 39–119 | MR
[5] Harnad J., Orlov A.Yu., “Fermionic construction of tau functions and random processes”, Phys. D, 235 (2007), 168–206 ; arXiv: 0704.1157 | DOI | MR | Zbl
[6] Harnad J., van de Leur J.W., Orlov A.Yu., “Multiple sums and integrals as neutral BKP tau functions”, Theoret. and Math. Phys., 168 (2011), 951–962 ; arXiv: 1101.4216 | DOI
[7] Ishikawa M., Kawamuko H., Okada S., A Pfaffian–Hafnian analogue of Borchardt's identity, arXiv: math.CO/0408364
[8] Kac V., Vertex algebras for beginners, University Lecture Series, 10, 2nd ed., American Mathematical Society, Providence, RI, 1998 | MR
[9] Kac V.G., van de Leur J.W., “Super boson-fermion correspondence of type $B$”, Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 369–406 | MR
[10] Kac V.G., van de Leur J.W., “The $n$-component KP hierarchy and representation theory”, J. Math. Phys., 44 (2003), 3245–3293 ; arXiv: hep-th/9308137 | DOI | MR | Zbl
[11] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press Oxford University Press, New York, 1995 | MR | Zbl
[12] Nimmo J.J.C., “Hall–Littlewood symmetric functions and the BKP equation”, J. Phys. A: Math. Gen., 23 (1990), 751–760 | DOI | MR | Zbl
[13] Orlov A.Yu., “Hypergeometric functions related to Schur $Q$-polynomials and the BKP equation”, Theoret. and Math. Phys., 137 (2003), 1574–1589 ; arXiv: math-ph/0302011 | DOI | MR | Zbl
[14] Orlov A.Yu., Shiota T., Takasaki K., Pfaffian structures and certain solutions to BKP hierarchies. I. Sums over partitions, arXiv: 1201.4518
[15] Orlov A.Yu., Scherbin D.M., “Multivariate hypergeometric functions as $\tau$-functions of Toda lattice and Kadomtsev–Petviashvili equation”, Phys. D, 152/153 (2001), 51–65 ; arXiv: math-ph/0003011 | DOI | MR | Zbl
[16] Sato M., “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto, 1981, 30–46 | Zbl
[17] Takasaki K., “Initial value problem for the Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 139–163 | MR
[18] van de Leur J.W., Orlov A.Yu., “Random turn walk on a half line with creation of particles at the origin”, Phys. Lett. A, 373 (2009), 2675–2681 ; arXiv: 0801.0066 | DOI | MR | Zbl
[19] You Y., “Polynomial solutions of the {BKP} hierarchy and projective representations of symmetric groups”, Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 449–464 | MR