@article{SIGMA_2012_8_a34,
author = {Jaume Llibre and Daniel Peralta-Salas},
title = {A note on the first integrals of vector fields with integrating factors and normalizers},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a34/}
}
TY - JOUR AU - Jaume Llibre AU - Daniel Peralta-Salas TI - A note on the first integrals of vector fields with integrating factors and normalizers JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a34/ LA - en ID - SIGMA_2012_8_a34 ER -
%0 Journal Article %A Jaume Llibre %A Daniel Peralta-Salas %T A note on the first integrals of vector fields with integrating factors and normalizers %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a34/ %G en %F SIGMA_2012_8_a34
Jaume Llibre; Daniel Peralta-Salas. A note on the first integrals of vector fields with integrating factors and normalizers. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a34/
[1] Abraham R., Marsden J.E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978 | MR | Zbl
[2] Arnold V.I., Kozlov V.V., Neishtadt A.I., Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 1997 | MR
[3] Bluman G.W., Anco S.C., Symmetry and integration methods for differential equations, Applied Mathematical Sciences, 154, Springer-Verlag, New York, 2002 | MR | Zbl
[4] Campoamor-Stursberg O.R., González-Gascón F., Peralta-Salas D., “Dynamical systems embedded into Lie algebras”, J. Math. Phys., 42 (2001), 5741–5752 | DOI | MR | Zbl
[5] García I.A., Grau M., “A survey on the inverse integrating factor”, Qual. Theory Dyn. Syst., 9 (2010), 115–166 ; arXiv: 0903.0941 | DOI | MR | Zbl
[6] González-Gascón F., “On a new first integral of certain dynamical systems”, Phys. Lett. A, 61 (1977), 375–376 | DOI | MR
[7] González-Gascón F., Peralta-Salas D., “Symmetries and first integrals of divergence-free $\mathbb R^3$ vector fields”, Internat. J. Non-Linear Mech., 35 (2000), 589–596 | DOI | MR | Zbl
[8] Goriely A., Integrability and nonintegrability of dynamical systems, Advanced Series in Nonlinear Dynamics, 19, World Scientific Publishing Co. Inc., River Edge, NJ, 2001 | DOI | MR | Zbl
[9] Haller G., Mezić I., “Reduction of three-dimensional, volume-preserving flows with symmetry”, Nonlinearity, 11 (1998), 319–339 | DOI | MR | Zbl
[10] Hojman S.A., “A new conservation law constructed without using either Lagrangians or Hamiltonians”, J. Phys. A: Math. Gen., 25 (1992), L291–L295 | DOI | MR
[11] Huang D., “A coordinate-free reduction for flows on the volume manifold”, Appl. Math. Lett., 17 (2004), 17–22 | DOI | MR | Zbl
[12] Kozlov V.V., “Remarks on a Lie theorem on the integrability of differential equations in closed form”, Differ. Equ., 41 (2005), 588–590 | DOI | MR | Zbl
[13] Marcelli M., Nucci M.C., “Lie point symmetries and first integrals: the Kowalevski top”, J. Math. Phys., 44 (2003), 2111–2132 ; arXiv: nlin.SI/0201023 | DOI | MR | Zbl
[14] Merker J., Theory of transformation groups, by S. Lie and F. Engel (Vol. I, 1888). Modern presentation and english translation, arXiv: 1003.3202
[15] Mezić I., Wiggins S., “On the integrability and perturbation of three-dimensional fluid flows with symmetry”, J. Nonlinear Sci., 4 (1994), 157–194 | DOI | MR | Zbl
[16] Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[17] Peralta-Salas D., “Period function and normalizers of vector fields in $\mathbb R^n$ with $n-1$ first integrals”, J. Differential Equations, 244 (2008), 1287–1303 | DOI | MR | Zbl
[18] Prelle M.J., Singer M.F., “Elementary first integrals of differential equations”, Trans. Amer. Math. Soc., 279 (1983), 215–229 | DOI | MR | Zbl
[19] Prince G., “Comment on "Period function and normalizers of vector fields in $\mathbb R^n$ with $n-1$ first integrals"”, J. Differential Equations, 246 (2009), 3750–3753 | DOI | MR | Zbl
[20] Sherring J., Prince G., “Geometric aspects of reduction of order”, Trans. Amer. Math. Soc., 334 (1992), 433–453 | DOI | MR | Zbl
[21] Walcher S., “Plane polynomial vector fields with prescribed invariant curves”, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), 633–649 | MR | Zbl