Mots-clés : Kepler–Coulomb system.
@article{SIGMA_2012_8_a33,
author = {Ernie G. Kalnins and Willard Miller Jr.},
title = {Structure theory for extended {Kepler{\textendash}Coulomb} {3D} classical superintegrable systems},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a33/}
}
TY - JOUR AU - Ernie G. Kalnins AU - Willard Miller Jr. TI - Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a33/ LA - en ID - SIGMA_2012_8_a33 ER -
%0 Journal Article %A Ernie G. Kalnins %A Willard Miller Jr. %T Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a33/ %G en %F SIGMA_2012_8_a33
Ernie G. Kalnins; Willard Miller Jr. Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a33/
[1] Ballesteros Á., Herranz F.J., “Maximal superintegrability of the generalized Kepler–Coulomb system on $N$-dimensional curved spaces”, J. Phys. A: Math. Theor., 42 (2009), 245203, 12 pp. ; arXiv: 0903.2337 | DOI | MR | Zbl
[2] Eastwood M., Miller W. (Editors), Symmetries and overdetermined systems of partial differential equations, The IMA Volumes in Mathematics and its Applications, 144, Springer, New York, 2008 | DOI | MR
[3] Evans N.W., Verrier P.E., “Superintegrability of the caged anisotropic oscillator”, J. Math. Phys., 49 (2008), 092902, 10 pp. ; arXiv: 0808.2146 | DOI | MR | Zbl
[4] Gonera C., Note on superintegrability of TTW model, arXiv: 1010.2915
[5] Kalnins E.G., Kress J.M., Miller W., “A recurrence relation approach to higher order quantum superintegrability”, SIGMA, 7 (2011), 031, 24 pp. ; arXiv: 1011.6548 | DOI | MR | Zbl
[6] Kalnins E.G., Kress J.M., Miller W., “Families of classical subgroup separable superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 092001, 8 pp. ; arXiv: 0912.3158 | DOI | MR | Zbl
[7] Kalnins E.G., Kress J.M., Miller W., “Fine structure for 3D second-order superintegrable systems: three-parameter potentials”, J. Phys. A: Math. Theor., 40 (2007), 5875–5892 | DOI | MR | Zbl
[8] Kalnins E.G., Kress J.M., Miller W., “Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl
[9] Kalnins E.G., Kress J.M., Miller W., “Superintegrability and higher order integrals for quantum systems”, J. Phys. A: Math. Theor., 43 (2010), 265205, 21 pp. ; arXiv: 1002.2665 | DOI | MR | Zbl
[10] Kalnins E.G., Kress J.M., Miller W., “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp. ; arXiv: 1006.0864 | DOI | MR | Zbl
[11] Kalnins E.G., Kress J.M., Miller W., Post S., “Structure theory for second order 2D superintegrable systems with 1-parameter potentials”, SIGMA, 5 (2009), 008, 24 pp. ; arXiv: 0901.3081 | DOI | MR | Zbl
[12] Kalnins E.G., Miller W., Pogosyan G.S., “Superintegrability and higher order constants for classical and quantum systems”, Phys. Atomic Nuclei, 74 (2011), 914–918 ; arXiv: 0912.2278 | DOI
[13] Kalnins E.G., Miller W., Post S., “Coupling constant metamorphosis and $N$th-order symmetries in classical and quantum mechanics”, J. Phys. A: Math. Theor., 43 (2010), 035202, 20 pp. ; arXiv: 0908.4393 | DOI | MR | Zbl
[14] Kalnins E.G., Miller W., Post S., “Models for quadratic algebras associated with second order superintegrable systems in 2D”, SIGMA, 4 (2008), 008, 21 pp. ; arXiv: 0801.2848 | DOI | MR | Zbl
[15] Kalnins E.G., Miller W., Post S., “Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere”, SIGMA, 7 (2011), 051, 26 pp. ; arXiv: 1010.3032 | DOI | MR | Zbl
[16] Maciejewski A.J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp. ; arXiv: 1004.3854 | DOI | MR | Zbl
[17] Maciejewski A.J., Przybylska M., Yoshida H., “Necessary conditions for the existence of additional first integrals for Hamiltonian systems with homogeneous potential”, Nonlinearity, 25 (2012), 255–277 ; arXiv: nlin.SI/0701057 | DOI | MR | Zbl
[18] Marquette I., “Construction of classical superintegrable systems with higher order integrals of motion from ladder operators”, J. Math. Phys., 51 (2010), 072903, 9 pp. ; arXiv: 1002.3118 | DOI | MR
[19] Post S., Winternitz P., “An infinite family of superintegrable deformations of the Coulomb potential”, J. Phys. A: Math. Theor., 43 (2010), 222001, 11 pp. ; arXiv: 1003.5230 | DOI | MR | Zbl
[20] Sergyeyev A., Blaszak M., “Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems”, J. Phys. A: Math. Theor., 41 (2008), 105205, 20 pp. ; arXiv: 0706.1473 | DOI | MR | Zbl
[21] Tanoudis Y., Daskaloyannis C., “Algebraic calculation of the energy eigenvalues for the nondegenerate three-dimensional Kepler–Coulomb potential”, SIGMA, 7 (2011), 054, 11 pp. ; arXiv: 1102.0397 | DOI | MR | Zbl
[22] Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (Editors), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, 37, American Mathematical Society, Providence, RI, 2004 | MR
[23] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp. ; arXiv: 0904.0738 | DOI | MR | Zbl
[24] Tremblay F., Turbiner A.V., Winternitz P., “Periodic orbits for an infinite family of classical superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 015202, 14 pp. ; arXiv: 0910.0299 | DOI | MR | Zbl
[25] Tsiganov A.V., “Addition theorems and the Drach superintegrable systems”, J. Phys. A: Math. Theor., 41 (2008), 335204, 16 pp. ; arXiv: 0805.3443 | DOI | MR | Zbl
[26] Tsiganov A.V., “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaotic Dyn., 14 (2009), 389–406 ; arXiv: 0810.1100 | DOI | MR | Zbl
[27] Tsiganov A.V., “On maximally superintegrable systems”, Regul. Chaotic Dyn., 13 (2008), 178–190 ; arXiv: 0711.2225 | DOI | MR | Zbl
[28] Verrier P.E., Evans N.W., “A new superintegrable Hamiltonian”, J. Math. Phys., 49 (2008), 022902, 8 pp. ; arXiv: 0712.3677 | DOI | MR | Zbl