Mots-clés : Lie group Sp$(2,R)$.
@article{SIGMA_2012_8_a32,
author = {Kurt Bernardo Wolf},
title = {A top-down account of linear canonical transforms},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a32/}
}
Kurt Bernardo Wolf. A top-down account of linear canonical transforms. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a32/
[1] Atakishiyev N.M., Nagiyev S.M., Vicent L.E., Wolf K.B., “Covariant discretization of axis-symmetric linear optical systems”, J. Opt. Soc. Amer. A, 17 (2000), 2301–2314 | DOI
[2] Bargmann V., “Irreducible unitary representations of the Lorentz group”, Ann. of Math. (2), 48 (1947), 568–640 | DOI | MR | Zbl
[3] Barker L., Candan {Ç}., Hakio{ğ}lu T., Kutay M.A., Ozaktas H.M., “The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform”, J. Phys. A: Math. Gen., 33 (2000), 2209–2222 | DOI | MR | Zbl
[4] Basu D., “The Lorentz group in the oscillator realization. I. The group $\mathrm{SO}(2, 1)$ and the transformation matrices connecting the $\mathrm{SO}(2)$ and $\mathrm{SO}(1, 1)$ bases”, J. Math. Phys., 19 (1978), 1667–1670 | DOI | MR | Zbl
[5] Basu D., Bhattacharyya T., “The Gel'fand realization and the exceptional representations of $\mathrm{SL}(2,\mathbf R)$”, J. Math. Phys., 26 (1985), 12–17 | DOI | MR | Zbl
[6] Basu D., Wolf K.B., “The unitary irreducible representations of $\mathrm{SL}(2,\mathbf R)$ in all subgroup reductions”, J. Math. Phys., 23 (1982), 189–205 | DOI | MR | Zbl
[7] Collins S.A.J., “Lens-system diffraction integral written in terms of matrix optics”, J. Opt. Soc. Amer. A, 60 (1970), 1168–1177 | DOI
[8] Gel'fand I.M., Naĭmark M.A., “Unitary representations of the Lorentz group”, Izvestiya Akad. Nauk SSSR. Ser. Mat., 11 (1947), 411–504 | MR
[9] Gilmore R., Lie groups, Lie algebras, and some of their applications, John Wiley Sons, New York, 1974 | Zbl
[10] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, sixth ed., Academic Press Inc., San Diego, CA, 2000 | MR | Zbl
[11] Han D., Kim Y.S., Noz M.E., “Wigner rotations and Iwasawa decompositions in polarization optics”, Phys. Rev. E, 60 (1999), 1036–1041 ; arXiv: quant-ph/0408181 | DOI | MR
[12] Healy J.J., Sheridan J.T., “Fast linear canonical transforms”, J. Opt. Soc. Amer. A, 27 (2010), 21–30 | DOI | MR
[13] Healy J.J., Sheridan J.T., “Sampling and discretization of the linear canonical transform”, Signal Process., 89 (2009), 641–648 | DOI | Zbl
[14] Mello P.A., Moshinsky M., “Nonlinear canonical transformations and their representations in quantum mechanics”, J. Math. Phys., 16 (1975), 2017–2028 | DOI | MR
[15] Monzón J.J., Sánchez-Soto L.L., “Multilayer optics as an analog computer for testing special relativity”, Phys. Lett. A, 262 (1999), 18–26 | DOI
[16] Moshinsky M., Quesne C., “Linear canonical transformations and their unitary representations”, J. Math. Phys., 12 (1971), 1772–1780 | DOI | MR | Zbl
[17] Moshinsky M., Quesne C., “Oscillator systems”, Proceedings of the 15th Solvay Conference in Physics (1970), Gordon and Breach, New York, 1974, 233–257
[18] Moshinsky M., Seligman T.H., Wolf K.B., “Canonical transformations and the radical oscillator and Coulomb problems”, J. Math. Phys., 13 (1972), 901–907 | DOI | MR
[19] Mukunda N., Aravind P.K., Simon R., “Wigner rotations, Bargmann invariants and geometric phases”, J. Phys. A: Math. Gen., 36 (2003), 2347–2370 | DOI | MR | Zbl
[20] Mukunda N., Radhakrishnan B., “New forms for the representations of the three-dimensional Lorentz group”, J. Math. Phys., 14 (1973), 254–258 | DOI | MR | Zbl
[21] Naĭmark M.A., Linear representations of the Lorentz group, The Macmillan Co., New York, 1964 | MR
[22] Pei S.C., Ding J.J., “Closed-form discrete fractional and affine Fourier transforms”, IEEE Trans. Signal Process., 48 (2000), 1338–1353 | DOI | MR | Zbl
[23] Quesne C., Moshinsky M., “Canonical transformations and matrix elements”, J. Math. Phys., 12 (1971), 1780–1783 | DOI | MR | Zbl
[24] Robertson H.P., “The uncertainty principle”, Phys. Rev., 34 (1929), 163–264 | DOI
[25] Wolf K.B., “Canonical transforms. I. Complex linear transforms”, J. Math. Phys., 15 (1974), 1295–1301 | DOI | MR | Zbl
[26] Wolf K.B., “Canonical transforms. II. Complex radial transforms”, J. Math. Phys., 15 (1974), 2102–2111 | DOI | MR | Zbl
[27] Wolf K.B., “Canonical transforms. IV. Hyperbolic transforms: continuous series of $\mathrm{SL}(2,\mathbf R)$ representations”, J. Math. Phys., 21 (1980), 680–688 | DOI | MR | Zbl
[28] Wolf K.B., Geometric optics on phase space, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004 | MR
[29] Wolf K.B., Integral transforms in science and engineering, Mathematical Concepts and Methods in Science and Engineering, 11, Plenum Press, New York, 1979 | MR | Zbl
[30] Wolf K.B., Aceves-de-la Cruz F., “Dependence of $s$-waves on continuous dimension: the quantum oscillator and free systems”, Fortschr. Phys., 54 (2006), 1083–1108 | DOI | MR | Zbl
[31] Yonte T., Monzón J.J., Sánchez-Soto L.L., Cariñena J.F., López-Lacasta C., “Understanding multilayers from a geometrical viewpoint”, J. Opt. Soc. Amer. A, 19 (2002), 603–609 ; arXiv: physics/0104050 | DOI | MR