Mots-clés : Plebanski action
@article{SIGMA_2012_8_a31,
author = {Laurent Freidel and Simone Speziale},
title = {On the relations between gravity and {BF} theories},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a31/}
}
Laurent Freidel; Simone Speziale. On the relations between gravity and BF theories. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a31/
[1] Alexandrov S., “Choice of connection in loop quantum gravity”, Phys. Rev. D, 65 (2002), 024011, 7 pp. ; arXiv: gr-qc/0107071 | DOI | MR
[2] Alexandrov S., “The Immirzi parameter and fermions with non-minimal coupling”, Classical Quantum Gravity, 25 (2008), 145012, 4 pp. ; arXiv: 0802.1221 | DOI | MR | Zbl
[3] Alexandrov S., Buffenoir E., Roche P., “Plebanski theory and covariant canonical formulation”, Classical Quantum Gravity, 24 (2007), 2809–2824 ; arXiv: gr-qc/0612071 | DOI | MR | Zbl
[4] Alexandrov S., Geiller M., Noui K., Spin foams and canonical quantization, arXiv: 1112.1961
[5] Alexandrov S., Krasnov K., “Hamiltonian analysis of non-chiral Plebanski theory and its generalizations”, Classical Quantum Gravity, 26 (2009), 055005, 10 pp. ; arXiv: 0809.4763 | DOI | MR | Zbl
[6] Alexandrov S., Livine E.R., “SU(2) loop quantum gravity seen from covariant theory”, Phys. Rev. D, 67 (2003), 044009, 15 pp. ; arXiv: gr-qc/0209105 | DOI | MR
[7] Anishetty R., Vytheeswaran A.S., “Gauge invariance in second-class constrained systems”, J. Phys. A: Math. Gen., 26 (1993), 5613–5619 | DOI | MR | Zbl
[8] Ashtekar A., “New Hamiltonian formulation of general relativity”, Phys. Rev. D, 36 (1987), 1587–1602 | DOI | MR
[9] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152 ; arXiv: gr-qc/0404018 | DOI | MR | Zbl
[10] Baez J.C., “An introduction to spin foam models of BF theory and quantum gravity”, Geometry and Quantum Physics (Schladming, 1999), Lecture Notes in Phys., 543, eds. H. Gausterer, H. Grosse, Springer, Berlin, 2000, 25–93 ; arXiv: gr-qc/9905087 | DOI | MR
[11] Baratin A., Oriti D., “Group field theory and simplicial gravity path integrals: a model for Holst–Plebanski gravity”, Phys. Rev. D, 85 (2012), 044003, 15 pp. ; arXiv: 1111.5842 | DOI
[12] Barbero G. J.F., “Real Ashtekar variables for Lorentzian signature space-times”, Phys. Rev. D, 51 (1995), 5507–5510 ; arXiv: gr-qc/9410014 | DOI | MR
[13] Barrett J.W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2009), 155014, 48 pp. ; arXiv: 0803.3319 | DOI | Zbl
[14] Barros e Sá N., “Hamiltonian analysis of general relativity with the Immirzi parameter”, Internat. J. Modern Phys. D, 10 (2001), 261–272 ; arXiv: gr-qc/0006013 | DOI | MR | Zbl
[15] Beke D., Scalar-tensor theories from $\Lambda(\phi)$ Plebanski gravity, arXiv: 1111.1139
[16] Beke D., Palmisano G., Speziale S., “Pauli–Fierz mass term in modified Plebanski gravity”, J. High Energy Phys., 2012:3 (2012), 069, 28 pp. ; arXiv: 1112.4051 | DOI
[17] Benedetti D., Speziale S., “Perturbative quantum gravity with the Immirzi parameter”, J. High Energy Phys., 2011:6 (2011), 107, 31 pp. ; arXiv: 1104.4028 | DOI | MR
[18] Benedetti D., Speziale S., Perturbative running of the Immirzi parameter, arXiv: 1111.0884
[19] Bengtsson I., “The cosmological constants”, Phys. Lett. B, 254 (1991), 55–60 | DOI | MR
[20] Bengtsson I., “2-form geometry and the 't Hooft–Plebanski action”, Classical Quantum Gravity, 12 (1995), 1581–1590 ; arXiv: gr-qc/9502010 | DOI | MR | Zbl
[21] Bethke L., Magueijo J., Chirality of tensor perturbations for complex values of the Immirzi parameter, arXiv: 1108.0816
[22] Birmingham D., Blau M., Rakowski M., Thompson G., “Topological field theory”, Phys. Rep., 209 (1991), 129–340 | DOI | MR
[23] Bodendorfer N., Thiemann T., Thurn A., New variables for classical and quantum gravity in all dimensions. I. Hamiltonian analysis, arXiv: 1105.3703
[24] Bodendorfer N., Thiemann T., Thurn A., On the implementation of the canonical quantum simplicity constraint, arXiv: 1105.3708
[25] Bonzom V., Smerlak M., “Bubble divergences: sorting out topology from cell structure”, Ann. Henri Poincaré, 13 (2012), 185–208 ; arXiv: 1103.3961 | DOI | Zbl
[26] Buffenoir E., Henneaux M., Noui K., Roche P., “Hamiltonian analysis of Plebanski theory”, Classical Quantum Gravity, 21 (2004), 5203–5220 ; arXiv: gr-qc/0404041 | DOI | MR | Zbl
[27] Capovilla R., “Generally covariant gauge theories”, Nuclear Phys. B, 373 (1992), 233–246 | DOI | MR
[28] Capovilla R., Dell J., Jacobson T., Mason L., “Self-dual $2$-forms and gravity”, Classical Quantum Gravity, 8 (1991), 41–57 | DOI | MR | Zbl
[29] Capovilla R., Montesinos M., Prieto V.A., Rojas E., “BF gravity and the Immirzi parameter”, Classical Quantum Gravity, 18 (2001), L49–L52 ; arXiv: gr-qc/0102073 | DOI | MR | Zbl
[30] Cattaneo A.S., Cotta-Ramusino P., Fröhlich J., Martellini M., “Topological BF theories in $3$ and $4$ dimensions”, J. Math. Phys., 36 (1995), 6137–6160 ; arXiv: hep-th/9505027 | DOI | MR | Zbl
[31] Cattaneo A.S., Cotta-Ramusino P., Fucito F., Martellini M., Rinaldi M., Tanzini A., Zeni M., “Four-dimensional Yang–Mills theory as a deformation of topological BF theory”, Comm. Math. Phys., 197 (1998), 571–621 ; arXiv: hep-th/9705123 | DOI | MR | Zbl
[32] Cianfrani F., Montani G., “Towards loop quantum gravity without the time gauge”, Phys. Rev. Lett., 102 (2009), 091301, 4 pp. ; arXiv: 0811.1916 | DOI | MR
[33] Clifton T., Bañados M., Skordis C., “The parameterized post-{N}ewtonian limit of bimetric theories of gravity”, Classical Quantum Gravity, 27 (2010), 235020, 31 pp. ; arXiv: 1006.5619 | DOI | MR | Zbl
[34] Damour T., Kogan I.I., “Effective Lagrangians and universality classes of nonlinear bigravity”, Phys. Rev. D, 66 (2002), 104024, 17 pp. ; arXiv: hep-th/0206042 | DOI | MR
[35] Date G., Kaul R.K., Sengupta S., “Topological interpretation of Barbero–Immirzi parameter”, Phys. Rev. D, 79 (2009), 044008, 7 pp. ; arXiv: 0811.4496 | DOI | MR
[36] De Pietri R., Freidel L., “so(4) {P}lebański action and relativistic spin-foam model”, Classical Quantum Gravity, 16 (1999), 2187–2196 ; arXiv: gr-qc/9804071 | DOI | MR | Zbl
[37] Deruelle N., Sasaki M., Sendouda Y., Yamauchi D., “Hamiltonian formulation of f(Riemann) theories of gravity”, Progr. Theoret. Phys., 123 (2010), 169–185 ; arXiv: 0908.0679 | DOI | Zbl
[38] Deser S., Teitelboim C., “Duality transformations of Abelian and non-Abelian gauge fields”, Phys. Rev. D, 13 (1976), 1592–1597 | DOI | MR
[39] Dona P., Speziale S., Introductory lectures to loop quantum gravity, arXiv: 1007.0402
[40] Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts in Mathematics, 19, Oxford University Press, Oxford, 2010 | MR | Zbl
[41] Dupuis M., Livine E.R., “Holomorphic simplicity constraints for 4D spinfoam models”, Classical Quantum Gravity, 28 (2011), 215022, 32 pp. ; arXiv: 1104.3683 | DOI | MR | Zbl
[42] Durka R., Kowalski-Glikman J., “Gravity as a constrained BF theory: Noether charges and Immirzi parameter”, Phys. Rev. D, 83 (2011), 124011, 6 pp. ; arXiv: 1103.2971 | DOI
[43] Engle J., Livine E., Pereira R., Rovelli C., “LQG vertex with finite Immirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149 ; arXiv: 0711.0146 | DOI | MR | Zbl
[44] Engle J., Pereira R., Rovelli C., “Loop-quantum-gravity vertex amplitude”, Phys. Rev. Lett., 99 (2007), 161301, 4 pp. ; arXiv: 0705.2388 | DOI | MR | Zbl
[45] Freidel L., Modified gravity without new degrees of freedom, arXiv: 0812.3200
[46] Freidel L., Krasnov K., “A new spin foam model for 4D gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp. ; arXiv: 0708.1595 | DOI | MR | Zbl
[47] Freidel L., Krasnov K., Puzio R., “BF description of higher-dimensional gravity theories”, Adv. Theor. Math. Phys., 3 (1999), 1289–1324 ; arXiv: hep-th/9901069 | MR | Zbl
[48] Freidel L., Louapre D., “Diffeomorphisms and spin foam models”, Nuclear Phys. B, 662 (2003), 279–298 ; arXiv: gr-qc/0212001 | DOI | MR | Zbl
[49] Freidel L., Minic D., Takeuchi T., “Quantum gravity, torsion, parity violation, and all that”, Phys. Rev. D, 72 (2005), 104002, 6 pp. ; arXiv: hep-th/0507253 | DOI | MR
[50] Freidel L., Starodubtsev A., Quantum gravity in terms of topological observables, arXiv: hep-th/0501191
[51] Geiller M., Lachieze-Rey M., Noui K., “A new look at Lorentz-covariant loop quantum gravity”, Phys. Rev. D, 84 (2011), 044002, 19 pp. ; arXiv: 1105.4194 | DOI
[52] Halpern M.B., “Field-strength and dual variable formulations of gauge theory”, Phys. Rev. D, 19 (1979), 517–530 | DOI
[53] Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University Press, Princeton, NJ, 1992 | MR | Zbl
[54] Holst S., “Barbero's Hamiltonian derived from a generalized Hilbert–Palatini action”, Phys. Rev. D, 53 (1996), 5966–5969 ; arXiv: gr-qc/9511026 | DOI | MR
[55] Immirzi G., “Real and complex connections for canonical gravity”, Classical Quantum Gravity, 14 (1997), L177–L181 ; arXiv: gr-qc/9612030 | DOI | MR | Zbl
[56] Ishibashi A., Speziale S., “Spherically symmetric black holes in minimally modified self-dual gravity”, Classical Quantum Gravity, 26 (2009), 175005, 37 pp. ; arXiv: 0904.3914 | DOI | MR | Zbl
[57] Krasnov K., “Deformations of the constraint algebra of Ashtekar's Hamiltonian formulation of general relativity”, Phys. Rev. Lett., 100 (2008), 081102, 4 pp. ; arXiv: 0711.0090 | DOI | MR | Zbl
[58] Krasnov K., “Effective metric Lagrangians from an underlying theory with two propagating degrees of freedom”, Phys. Rev. D, 81 (2010), 084026, 40 pp. ; arXiv: 0911.4903 | DOI | MR
[59] Krasnov K., Renormalizable non-metric quantum gravity?, arXiv: hep-th/0611182
[60] Krasnov K., Shtanov Y., “Cosmological perturbations in a family of deformations of general relativity”, J. Cosmol. Astropart. Phys., 2010:6 (2010), 006, 42 pp. ; arXiv: 1002.1210 | DOI | MR
[61] Krasnov K., Shtanov Y., “Halos of modified gravity”, Internat. J. Modern Phys. D, 17 (2008), 2555–2562 ; arXiv: 0805.2668 | DOI | MR | Zbl
[62] Lisi A.G., An exceptionally simple theory of everything, arXiv: 0711.0770
[63] Lisi A.G., Smolin L., Speziale S., “Unification of gravity, gauge fields and Higgs bosons”, J. Phys. A: Math. Theor., 43 (2010), 445401, 10 pp. ; arXiv: 1004.4866 | DOI | MR | Zbl
[64] Liu L., Montesinos M., Perez A., “Topological limit of gravity admitting an SU(2) connection formulation”, Phys. Rev. D, 81 (2010), 064033, 9 pp. ; arXiv: 0906.4524 | DOI | MR
[65] Livine E.R., Speziale S., “Solving the simplicity constraints for spinfoam quantum gravity”, Europhys. Lett., 81 (2008), 50004, 6 pp. ; arXiv: 0708.1915 | DOI
[66] MacDowell S.W., Mansouri F., “Unified geometric theory of gravity and supergravity”, Phys. Rev. Lett., 38 (1977), 739–742 | DOI | MR
[67] Mercuri S., “Fermions in the Ashtekar–Barbero connection formalism for arbitrary values of the Immirzi parameter”, Phys. Rev. D, 73 (2006), 084016, 14 pp. ; arXiv: gr-qc/0601013 | DOI | MR
[68] Mielke E.W., “Spontaneously broken topological $\mathrm{SL}(5,\mathbb R)$ gauge theory with standard gravity emerging”, Phys. Rev. D, 83 (2011), 044004, 9 pp. | DOI | MR
[69] Mitra P., Rajaraman R., “Gauge-invariant reformulation of theories with second-class constraints”, Ann. Physics, 203 (1990), 157–172 | DOI | MR | Zbl
[70] Montesinos M., “Alternative symplectic structures for SO(3,1) and SO(4) four-dimensional BF theories”, Classical Quantum Gravity, 23 (2006), 2267–2278 ; arXiv: gr-qc/0603076 | DOI | MR | Zbl
[71] Montesinos M., Velázquez M., “BF gravity with Immirzi parameter and cosmological constant”, Phys. Rev. D, 81 (2010), 044033, 4 pp. ; arXiv: 1002.3836 | DOI | MR
[72] Peldán P., “Actions for gravity, with generalizations: a review”, Classical Quantum Gravity, 11 (1994), 1087–1132 ; arXiv: gr-qc/9305011 | DOI | MR
[73] Percacci R., “Gravity from a particle physicists' perspective”, PoS Proc. Sci., 2009, PoS(ISFTG2009), 011, 30 pp.; arXiv: 0910.5167
[74] Perez A., “Spin foam quantization of SO(4) Plebański's action”, Adv. Theor. Math. Phys., 5 (2001), 947–968 ; arXiv: gr-qc/0203058 | MR | Zbl
[75] Perez A., “The spin foam approach to quantum gravity”, Living Rev. Relativ. (to appear)
[76] Perez A., Rovelli C., “Physical effects of the Immirzi parameter in loop quantum gravity”, Phys. Rev. D, 73 (2006), 044013, 3 pp. ; arXiv: gr-qc/0505081 | DOI | MR
[77] Plebanski J.F., “On the separation of Einsteinian substructures”, J. Math. Phys., 18 (1977), 2511–2520 | DOI | MR | Zbl
[78] Randono A., “de Sitter spaces: topological ramifications of gravity as a gauge theory”, Classical Quantum Gravity, 27 (2010), 105008, 18 pp. ; arXiv: 0909.5435 | DOI | MR | Zbl
[79] Reisenberger M.P., “A left-handed simplicial action for {E}uclidean general relativity”, Classical Quantum Gravity, 14 (1997), 1753–1770 ; arXiv: gr-qc/9609002 | DOI | MR | Zbl
[80] Reisenberger M.P., “Classical Euclidean general relativity from “left-handed area = right-handed area””, Classical Quantum Gravity, 16 (1999), 1357–1371 ; arXiv: gr-qc/9804061 | DOI | MR | Zbl
[81] Reisenberger M.P., “New constraints for canonical general relativity”, Nuclear Phys. B, 457 (1995), 643–687 ; arXiv: gr-qc/9505044 | DOI | MR | Zbl
[82] Rivasseau V., “Towards renormalizing group field theory”, PoS Proc. Sci., 2010, PoS(CNCFG2010), 004, 21 pp.; arXiv: 1103.1900
[83] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[84] Rovelli C., Speziale S., “On the expansion of a quantum field theory around a topological sector”, Gen. Relativity Gravitation, 39 (2007), 167–178 ; arXiv: gr-qc/0508106 | DOI | MR | Zbl
[85] Smolin L., “Plebanski action extended to a unification of gravity and Yang–Mills theory”, Phys. Rev. D, 80 (2009), 124017, 6 pp. ; arXiv: 0712.0977 | DOI | MR
[86] Smolin L., Speziale S., “Note on the Plebanski action with the cosmological constant and an Immirzi parameter”, Phys. Rev. D, 81 (2010), 024032, 6 pp. ; arXiv: 0908.3388 | DOI | MR
[87] Speziale S., “Bimetric theory of gravity from the nonchiral Plebanski action”, Phys. Rev. D, 82 (2010), 064003, 17 pp. ; arXiv: 1003.4701 | DOI | MR
[88] Stelle K.S., “Classical gravity with higher derivatives”, Gen. Relativity Gravitation, 9 (1978), 353–371 | DOI | MR
[89] Stelle K.S., West P.C., “de Sitter gauge invariance and the geometry of the Einstein–Cartan theory”, J. Phys. A: Math. Gen., 12 (1979), L205–L210 | DOI | MR
[90] 't Hooft G., “A chiral alternative to the vierbein field in general relativity”, Nuclear Phys. B, 357 (1991), 211–221 | DOI | MR
[91] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 ; arXiv: gr-qc/0110034 | DOI | MR | Zbl
[92] Townsend P.K., “Small-scale structure of spacetime as the origin of the gravitational constant”, Phys. Rev. D, 15 (1977), 2795–2801 | DOI | MR
[93] Tseytlin A.A., “Poincaré and de Sitter gauge theories of gravity with propagating torsion”, Phys. Rev. D, 26 (1982), 3327–3341 | DOI | MR
[94] Urbantke H., “On integrability properties of $\mathrm{SU}(2)$ Yang–Mills fields. I. Infinitesimal part”, J. Math. Phys., 25 (1984), 2321–2324 | DOI | MR
[95] Wieland W.M., “Complex Ashtekar variables and reality conditions for Holst's action”, Ann. Henri Poincaré, 13 (2012), 425–448 ; arXiv: 1012.1738 | DOI | Zbl
[96] Wilczek F., “Riemann–Einstein structure from volume and gauge symmetry”, Phys. Rev. Lett., 80 (1998), 4851–4854 ; arXiv: hep-th/9801184 | DOI | MR | Zbl
[97] Wise D.K., “MacDowell–Mansouri gravity and Cartan geometry”, Classical Quantum Gravity, 27 (2010), 155010, 26 pp. ; arXiv: gr-qc/0611154 | DOI | MR | Zbl
[98] Witten E., “$2+1$-dimensional gravity as an exactly soluble system”, Nuclear Phys. B, 311 (1988), 46–78 | DOI | MR | Zbl
[99] Zapata J.A., “Topological lattice gravity using self-dual variables”, Classical Quantum Gravity, 13 (1996), 2617–2634 ; arXiv: gr-qc/9603030 | DOI | MR | Zbl