Superintegrable Stäckel systems on the plane: elliptic and parabolic coordinates
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently we proposed a generic construction of the additional integrals of motion for the Stäckel systems applying addition theorems to the angle variables. In this note we show some trivial examples associated with angle variables for elliptic and parabolic coordinate systems on the plane.
Keywords: integrability, superintegrability, separation of variables, addition theorems.
Mots-clés : Abel equations
@article{SIGMA_2012_8_a30,
     author = {Andrey V. Tsiganov},
     title = {Superintegrable {St\"ackel} systems on the plane: elliptic and parabolic coordinates},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a30/}
}
TY  - JOUR
AU  - Andrey V. Tsiganov
TI  - Superintegrable Stäckel systems on the plane: elliptic and parabolic coordinates
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a30/
LA  - en
ID  - SIGMA_2012_8_a30
ER  - 
%0 Journal Article
%A Andrey V. Tsiganov
%T Superintegrable Stäckel systems on the plane: elliptic and parabolic coordinates
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a30/
%G en
%F SIGMA_2012_8_a30
Andrey V. Tsiganov. Superintegrable Stäckel systems on the plane: elliptic and parabolic coordinates. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a30/

[1] Baker H.F., Abel's theorem and the allied theory including the theory of the theta functions, Cambridge University Press, Cambridge, 1897

[2] Borisov A.V., Kilin A.A., Mamaev I.S., “Superintegrable system on a sphere with the integral of higher degree”, Regul. Chaotic Dyn., 14 (2009), 615–620 | DOI | MR | Zbl

[3] Euler L., Institutiones Calculi integralis, Acta Petropolitana, 1761

[4] Grigoryev Y.A., Khudobakhshov V.A., Tsiganov A.V., “On Euler superintegrable systems”, J. Phys. A: Math. Theor., 42 (2009), 075202, 11 pp. | DOI | MR | Zbl

[5] Kalnins E.G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow, 1986 | MR | Zbl

[6] Kalnins E.G., Miller W., Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems, arXiv: 1202.0197

[7] Maciejewski A.J., Przybylska M., Tsiganov A.V., “On algebraic construction of certain integrable and super-integrable systems”, Phys. D, 240 (2011), 1426–1448 ; arXiv: 1011.3249 | DOI | MR | Zbl

[8] Popperi I., Post S., Winternitz P., Third-order superintegrable systems separable in parabolic coordinates, arXiv: 1204.0700

[9] Post S., Winternitz P., “A nonseparable quantum superintegrable system in 2D real Euclidean space”, J. Phys. A: Math. Theor., 44 (2011), 162001, 8 pp. ; arXiv: 1101.5405 | DOI | MR | Zbl

[10] Richelot F., “Ueber die Integration eines Merkwürdigen Systems von Differentialgleichungen”, J. Reine Angew. Math., 23 (1842), 354–369 | DOI | Zbl

[11] Stäckel P., Über die Integration der Hamilton–Jacobischen Differential Gleichung Mittelst Separation der Variabeln, Habilitationsschrift, Halle, 1891

[12] Tsiganov A.V., “Addition theorems and the Drach superintegrable systems”, J. Phys. A: Math. Theor., 41 (2008), 335204, 16 pp. ; arXiv: 0805.3443 | DOI | MR | Zbl

[13] Tsiganov A.V., “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaotic Dyn., 14 (2009), 389–406 ; arXiv: 0810.1100 | DOI | MR | Zbl

[14] Tsiganov A.V., “On maximally superintegrable systems”, Regul. Chaotic Dyn., 13 (2008), 178–190 ; arXiv: 0711.2225 | DOI | MR | Zbl

[15] Tsiganov A.V., “On the superintegrable Richelot systems”, J. Phys. A: Math. Theor., 43 (2010), 055201, 14 pp. ; arXiv: 0909.2923 | DOI | MR | Zbl