Mots-clés : Abel equations
@article{SIGMA_2012_8_a30,
author = {Andrey V. Tsiganov},
title = {Superintegrable {St\"ackel} systems on the plane: elliptic and parabolic coordinates},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a30/}
}
Andrey V. Tsiganov. Superintegrable Stäckel systems on the plane: elliptic and parabolic coordinates. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a30/
[1] Baker H.F., Abel's theorem and the allied theory including the theory of the theta functions, Cambridge University Press, Cambridge, 1897
[2] Borisov A.V., Kilin A.A., Mamaev I.S., “Superintegrable system on a sphere with the integral of higher degree”, Regul. Chaotic Dyn., 14 (2009), 615–620 | DOI | MR | Zbl
[3] Euler L., Institutiones Calculi integralis, Acta Petropolitana, 1761
[4] Grigoryev Y.A., Khudobakhshov V.A., Tsiganov A.V., “On Euler superintegrable systems”, J. Phys. A: Math. Theor., 42 (2009), 075202, 11 pp. | DOI | MR | Zbl
[5] Kalnins E.G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow, 1986 | MR | Zbl
[6] Kalnins E.G., Miller W., Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems, arXiv: 1202.0197
[7] Maciejewski A.J., Przybylska M., Tsiganov A.V., “On algebraic construction of certain integrable and super-integrable systems”, Phys. D, 240 (2011), 1426–1448 ; arXiv: 1011.3249 | DOI | MR | Zbl
[8] Popperi I., Post S., Winternitz P., Third-order superintegrable systems separable in parabolic coordinates, arXiv: 1204.0700
[9] Post S., Winternitz P., “A nonseparable quantum superintegrable system in 2D real Euclidean space”, J. Phys. A: Math. Theor., 44 (2011), 162001, 8 pp. ; arXiv: 1101.5405 | DOI | MR | Zbl
[10] Richelot F., “Ueber die Integration eines Merkwürdigen Systems von Differentialgleichungen”, J. Reine Angew. Math., 23 (1842), 354–369 | DOI | Zbl
[11] Stäckel P., Über die Integration der Hamilton–Jacobischen Differential Gleichung Mittelst Separation der Variabeln, Habilitationsschrift, Halle, 1891
[12] Tsiganov A.V., “Addition theorems and the Drach superintegrable systems”, J. Phys. A: Math. Theor., 41 (2008), 335204, 16 pp. ; arXiv: 0805.3443 | DOI | MR | Zbl
[13] Tsiganov A.V., “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaotic Dyn., 14 (2009), 389–406 ; arXiv: 0810.1100 | DOI | MR | Zbl
[14] Tsiganov A.V., “On maximally superintegrable systems”, Regul. Chaotic Dyn., 13 (2008), 178–190 ; arXiv: 0711.2225 | DOI | MR | Zbl
[15] Tsiganov A.V., “On the superintegrable Richelot systems”, J. Phys. A: Math. Theor., 43 (2010), 055201, 14 pp. ; arXiv: 0909.2923 | DOI | MR | Zbl