On a Lie algebraic characterization of vector bundles
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that a vector bundle $\pi\colon E\to M$ is characterized by the Lie algebra generated by all differential operators on $E$ which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell–Shanks type but it is remarkable in the sense that it is the whole fibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229–239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1.
Keywords: vector bundle, algebraic characterization, Lie algebra, differential operators.
@article{SIGMA_2012_8_a3,
     author = {Pierre B.A. Lecomte and Thomas Leuther and Elie Zihindula Mushengezi},
     title = {On a {Lie} algebraic characterization of vector bundles},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a3/}
}
TY  - JOUR
AU  - Pierre B.A. Lecomte
AU  - Thomas Leuther
AU  - Elie Zihindula Mushengezi
TI  - On a Lie algebraic characterization of vector bundles
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a3/
LA  - en
ID  - SIGMA_2012_8_a3
ER  - 
%0 Journal Article
%A Pierre B.A. Lecomte
%A Thomas Leuther
%A Elie Zihindula Mushengezi
%T On a Lie algebraic characterization of vector bundles
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a3/
%G en
%F SIGMA_2012_8_a3
Pierre B.A. Lecomte; Thomas Leuther; Elie Zihindula Mushengezi. On a Lie algebraic characterization of vector bundles. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a3/

[1] Gel'fand I.M., Kolmogorov A.N., “On rings of continuous functions on topological spaces”, Dokl. Akad. Nauk SSSR, 22:1 (1939), 7–10

[2] Grabowski J., Kotov A., Poncin N., Lie superalgebras of differential operators, arXiv: 1011.1804

[3] Grabowski J., Kotov A., Poncin N., “The Lie superalgebra of a supermanifold”, J. Lie Theory, 20 (2010), 739–749 | MR | Zbl

[4] Grabowski J., Poncin N., “Automorphisms of quantum and classical Poisson algebras”, Compos. Math., 140 (2004), 511–527 ; arXiv: math.RA/0211175 | DOI | MR | Zbl

[5] Grabowski J., Poncin N., “Lie algebraic characterization of manifolds”, Cent. Eur. J. Math., 2 (2004), 811–825 ; arXiv: math.DG/0310202 | DOI | MR | Zbl

[6] Grabowski J., Poncin N., “On quantum and classical Poisson algebras”, Geometry and Topology of Manifolds, Banach Center Publ., 76, Polish Acad. Sci., Warsaw, 2007, 313–324 ; arXiv: math.DG/0510031 | DOI | MR | Zbl

[7] Lecomte P., “On the infinitesimal automorphisms of a vector bundle”, J. Math. Pures Appl. (9), 60 (1981), 229–239 | MR | Zbl

[8] Shanks M.E., Pursell L.E., “The Lie algebra of a smooth manifold”, Proc. Amer. Math. Soc., 5 (1954), 468–472 | DOI | MR | Zbl