@article{SIGMA_2012_8_a28,
author = {Carlos Correia Ramos and Nuno Martins and Paulo R. Pinto},
title = {Orbit representations from linear mod 1 transformations},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a28/}
}
TY - JOUR AU - Carlos Correia Ramos AU - Nuno Martins AU - Paulo R. Pinto TI - Orbit representations from linear mod 1 transformations JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a28/ LA - en ID - SIGMA_2012_8_a28 ER -
Carlos Correia Ramos; Nuno Martins; Paulo R. Pinto. Orbit representations from linear mod 1 transformations. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a28/
[1] Abe M., Kawamura K., “Recursive fermion system in Cuntz algebra. I. Embeddings of fermion algebra into Cuntz algebra”, Comm. Math. Phys., 228 (2002), 85–101 ; arXiv: math-ph/0110003 | DOI | MR | Zbl
[2] Bratteli O., Jorgensen P.E.T., “Iterated function systems and permutation representations of the Cuntz algebra”, Mem. Amer. Math. Soc., 139, no. 663, 1999, 89 pp. ; arXiv: funct-an/9612002 | MR
[3] Bratteli O., Jorgensen P.E.T., Ostrovs'kyĭ V., “Representation theory and numerical AF-invariants. The representations and centralizers of certain states on $\mathcal{O}_d$”, Mem. Amer. Math. Soc., 168, no. 797, 2004, 178 pp. ; arXiv: math.OA/9907036 | MR
[4] Carlsen T.M., Silvestrov S., “$C^*$-crossed products and shift spaces”, Expo. Math., 25 (2007), 275–307 ; arXiv: math.OA/0512488 | DOI | MR | Zbl
[5] Correia Ramos C., Martins N., Pinto P.R., “On $C^*$-algebras from interval maps”, Complex Anal. Oper. Theory (to appear) | DOI
[6] Correia Ramos C., Martins N., Pinto P.R., “Orbit representations and circle maps”, Operator Algebras, Operator Theory and Applications, Oper. Theory Adv. Appl., 181, Birkhäuser Verlag, Basel, 2008, 417–427 | DOI | MR | Zbl
[7] Correia Ramos C., Martins N., Pinto P.R., Sousa Ramos J., “Cuntz–Krieger algebras representations from orbits of interval maps”, J. Math. Anal. Appl., 341 (2008), 825–833 | DOI | MR | Zbl
[8] Cuntz J., Krieger W., “A class of $C^\ast$-algebras and topological Markov chains”, Invent. Math., 56 (1980), 251–268 | DOI | MR | Zbl
[9] Daubechies I., Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992 | MR | Zbl
[10] Dutkay D.E., Jorgensen P.E.T., “Wavelet constructions in non-linear dynamics”, Electron. Res. Announc. Amer. Math. Soc., 11 (2005), 21–33 ; arXiv: math.DS/0501145 | DOI | MR | Zbl
[11] Exel R., “A new look at the crossed-product of a $C^*$-algebra by an endomorphism”, Ergodic Theory Dynam. Systems, 23 (2003), 1733–1750 ; arXiv: math.OA/0012084 | DOI | MR | Zbl
[12] Jorgensen P.E.T., “Certain representations of the Cuntz relations, and a question on wavelets decompositions”, Operator Theory, Operator Algebras, and Applications, Contemp. Math., 414, Amer. Math. Soc., Providence, RI, 2006, 165–188 ; arXiv: math.CA/0405372 | DOI | MR | Zbl
[13] Marcolli M., Paolucci A.M., “Cuntz–Krieger algebras and wavelets on fractals”, Complex Anal. Oper. Theory, 5 (2011), 41–81 ; arXiv: 0908.0596 | DOI | MR | Zbl
[14] Martins N., Sousa Ramos J., “Cuntz–Krieger algebras arising from linear mod one transformations”, Differential Equations and Dynamical Systems (Lisbon, 2000), Fields Inst. Commun., 31, Amer. Math. Soc., Providence, RI, 2002, 265–273 | MR | Zbl
[15] Matsumoto K., “On $C^*$-algebras associated with subshifts”, Internat. J. Math., 8 (1997), 357–374 | DOI | MR | Zbl
[16] Milnor J., Thurston W., “On iterated maps of the interval”, Dynamical Systems (College Park, MD, 1986–1987), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 465–563 | DOI | MR
[17] Pedersen G.K., $C^\ast$-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press Inc., London, 1979 | MR | Zbl