@article{SIGMA_2012_8_a25,
author = {Tim Koslowski and Hanno Sahlmann},
title = {Loop quantum gravity vacuum with nondegenerate geometry},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a25/}
}
Tim Koslowski; Hanno Sahlmann. Loop quantum gravity vacuum with nondegenerate geometry. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a25/
[1] Ashtekar A., Lewandowski J., “Differential geometry on the space of connections via graphs and projective limits”, J. Geom. Phys., 17 (1995), 191–230 ; arXiv: hep-th/9412073 | DOI | MR | Zbl
[2] Ashtekar A., Lewandowski J., “Projective techniques and functional integration for gauge theories”, J. Math. Phys., 36 (1995), 2170–2191 ; arXiv: gr-qc/9411046 | DOI | MR | Zbl
[3] Ashtekar A., Lewandowski J., “Quantum theory of geometry. I. Area operators”, Classical Quantum Gravity, 14 (1997), A55–A81 ; arXiv: gr-qc/9602046 | DOI | MR | Zbl
[4] Ashtekar A., Lewandowski J., “Relation between polymer and Fock excitations”, Classical Quantum Gravity, 18 (2001), L117–L127 ; arXiv: gr-qc/0107043 | DOI | MR | Zbl
[5] Ashtekar A., Lewandowski J., Marolf D., Mourão J., Thiemann T., “Quantization of diffeomorphism invariant theories of connections with local degrees of freedom”, J. Math. Phys., 36 (1995), 6456–6493 ; arXiv: gr-qc/9504018 | DOI | MR | Zbl
[6] Ashtekar A., Rovelli C., Smolin L., “Weaving a classical metric with quantum threads”, Phys. Rev. Lett., 69 (1992), 237–240 ; arXiv: hep-th/9203079 | DOI | MR | Zbl
[7] Bahr B., Thiemann T., “Gauge-invariant coherent states for loop quantum gravity. I. Abelian gauge groups”, Classical Quantum Gravity, 26 (2009), 045011, 22 pp. ; arXiv: 0709.4619 | DOI | MR | Zbl
[8] Bahr B., Thiemann T., “Gauge-invariant coherent states for loop quantum gravity. II. Non-Abelian gauge groups”, Classical Quantum Gravity, 26 (2009), 045012, 45 pp. ; arXiv: 0709.4636 | DOI | MR | Zbl
[9] Bianchi E., Magliaro E., Perini C., “Coherent spin-networks”, Phys. Rev. D, 82 (2010), 024012, 7 pp. ; arXiv: 0912.4054 | DOI
[10] Dziendzikowski M., Okolów A., “New diffeomorphism invariant states on a holonomy-flux algebra”, Classical Quantum Gravity, 27 (2010), 225005, 24 pp. ; arXiv: 0912.1278 | DOI | MR | Zbl
[11] Fleischhack C., Construction of generalized connections, arXiv: math-ph/0601005
[12] Fleischhack C., “Irreducibility of the Weyl algebra in loop quantum gravity”, Phys. Rev. Lett., 97 (2006), 061302, 4 pp. ; arXiv: math-ph/0407006 | DOI
[13] Fleischhack C., “Representations of the Weyl algebra in quantum geometry”, Comm. Math. Phys., 285 (2009), 67–140 ; arXiv: math-ph/0407006 | DOI | MR | Zbl
[14] Freidel L., Livine E.R., “$\mathrm U(N)$ coherent states for loop quantum gravity”, J. Math. Phys., 52 (2011), 052502, 21 pp. ; arXiv: 1005.2090 | DOI | MR
[15] Koslowski T.A., Cosmological sectors in loop quantum gravity, Ph.D. thesis, Universität Würzburg, 2008
[16] Koslowski T.A., Dynamical quantum geometry (DQG programme), arXiv: 0709.3465
[17] Lewandowski J., “Volume and quantizations”, Classical Quantum Gravity, 14 (1997), 71–76 ; arXiv: gr-qc/9602035 | DOI | MR | Zbl
[18] Lewandowski J., Okolów A., Sahlmann H., Thiemann T., “Uniqueness of diffeomorphism invariant states on holonomy-flux algebras”, Comm. Math. Phys., 267 (2006), 703–733 ; arXiv: gr-qc/0504147 | DOI | MR | Zbl
[19] Okolów A., Lewandowski J., “Automorphism covariant representations of the holonomy-flux $\ast$-algebra”, Classical Quantum Gravity, 22 (2005), 657–679 ; arXiv: gr-qc/0405119 | DOI | MR | Zbl
[20] Okolów A., Lewandowski J., “Diffeomorphism covariant representations of the holonomy-flux $\star$-algebra”, Classical Quantum Gravity, 20 (2003), 3543–3567 ; arXiv: gr-qc/0302059 | DOI | MR | Zbl
[21] Oriti D., Sindoni L., “Toward classical geometrodynamics from the group field theory hydrodynamics”, New J. Phys., 13 (2011), 025006, 44 pp. ; arXiv: 1010.5149 | DOI
[22] Sahlmann H., “On loop quantum gravity kinematics with a non-degenerate spatial background”, Classical Quantum Gravity, 27 (2010), 225007, 17 pp. ; arXiv: 1006.0388 | DOI | MR | Zbl
[23] Sahlmann H., “Some results concerning the representation theory of the algebra underlying loop quantum gravity”, J. Math. Phys., 52 (2011), 012502, 9 pp. ; arXiv: gr-qc/0207111 | DOI | MR
[24] Sahlmann H., “When do measures on the space of connections support the triad operators of loop quantum gravity?”, J. Math. Phys., 52 (2011), 012503, 14 pp. ; arXiv: gr-qc/0207112 | DOI | MR
[25] Sahlmann H., Thiemann T., “Irreducibility of the Ashtekar–Isham–Lewandowski representation”, Classical Quantum Gravity, 23 (2006), 4453–4471 ; arXiv: gr-qc/0303074 | DOI | MR | Zbl
[26] Sahlmann H., Thiemann T., On the superselection theory of the Weyl algebra for diffeomorphism invariant quantum gauge theories, arXiv: gr-qc/0302090
[27] Thiemann T., “Complexifier coherent states for quantum general relativity”, Classical Quantum Gravity, 23 (2006), 2063–2117 ; arXiv: gr-qc/0206037 | DOI | MR | Zbl
[28] Thiemann T., “Gauge field theory coherent states (GCS). I. General properties”, Classical Quantum Gravity, 18 (2001), 2025–2064 ; arXiv: hep-th/0005233 | DOI | MR | Zbl
[29] Thiemann T., “Quantum spin dynamics (QSD)”, Classical Quantum Gravity, 15 (1998), 839–873 ; arXiv: gr-qc/9606089 | DOI | MR | Zbl
[30] Varadarajan M., “Fock representations from $\mathrm U(1)$ holonomy algebras”, Phys. Rev. D, 61 (2000), 104001, 13 pp. ; arXiv: gr-qc/0001050 | DOI | MR
[31] Varadarajan M., “Towards new background independent representations for loop quantum gravity”, Classical Quantum Gravity, 25 (2008), 105011, 17 pp. ; arXiv: 0709.1680 | DOI | MR | Zbl