@article{SIGMA_2012_8_a24,
author = {Elchin I. Jafarov and Neli I. Stoilova and Joris Van der Jeugt},
title = {Deformed $\mathfrak{su}(1,1)$ algebra as a model for quantum oscillators},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a24/}
}
TY - JOUR
AU - Elchin I. Jafarov
AU - Neli I. Stoilova
AU - Joris Van der Jeugt
TI - Deformed $\mathfrak{su}(1,1)$ algebra as a model for quantum oscillators
JO - Symmetry, integrability and geometry: methods and applications
PY - 2012
VL - 8
UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a24/
LA - en
ID - SIGMA_2012_8_a24
ER -
%0 Journal Article
%A Elchin I. Jafarov
%A Neli I. Stoilova
%A Joris Van der Jeugt
%T Deformed $\mathfrak{su}(1,1)$ algebra as a model for quantum oscillators
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a24/
%G en
%F SIGMA_2012_8_a24
Elchin I. Jafarov; Neli I. Stoilova; Joris Van der Jeugt. Deformed $\mathfrak{su}(1,1)$ algebra as a model for quantum oscillators. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a24/
[1] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[2] Atakishiyev M.N., Atakishiyev N.M., Klimyk A.U., “On $\mathrm{su}_q(1,1)$-models of quantum oscillator”, J. Math. Phys., 47 (2006), 093502, 21 pp. | DOI | MR | Zbl
[3] Atakishiyev N.M., Pogosyan G.S., Vicent L.E., Wolf K.B., “Finite two-dimensional oscillator. I. The Cartesian model”, J. Phys. A: Math. Gen., 34 (2001), 9381–9398 | DOI | MR | Zbl
[4] Atakishiyev N.M., Pogosyan G.S., Vicent L.E., Wolf K.B., “Finite two-dimensional oscillator. II. The radial model”, J. Phys. A: Math. Gen., 34 (2001), 9399–9415 | DOI | MR | Zbl
[5] Atakishiyev N.M., Pogosyan G.S., Wolf K.B., “Finite models of the oscillator”, Phys. Part. Nuclei, 36 (2005), 247–265
[6] Atakishiyev N.M., Suslov S.K., “Difference analogues of the harmonic oscillator”, Theoret. and Math. Phys., 85 (1990), 1055–1062 | DOI | MR
[7] Bailey W.N., Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, 32, Stechert-Hafner, Inc., New York, 1964 | MR
[8] Bargmann V., “Irreducible unitary representations of the Lorentz group”, Ann. of Math. (2), 48 (1947), 568–640 | DOI | MR | Zbl
[9] Basu D., Wolf K.B., “The unitary irreducible representations of $\mathrm{SL}(2,\mathbf R)$ in all subgroup reductions”, J. Math. Phys., 23 (1982), 189–205 | DOI | MR | Zbl
[10] Berezans'kiĭ Ju.M., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, American Mathematical Society, Providence, R.I., 1968 | MR
[11] Biedenharn L.C., “The quantum group $\mathrm{SU}_q(2)$ and a $q$-analogue of the boson operators”, J. Phys. A: Math. Gen., 22 (1989), L873–L878 | DOI | MR | Zbl
[12] Groenevelt W., Koelink E., “Meixner functions and polynomials related to Lie algebra representations,”, J. Phys. A: Math. Gen., 35 (2002), 65–85 ; arXiv: math.CA/0109201 | DOI | MR | Zbl
[13] Horváthy P.A., Plyushchay M.S., Valenzuela M., “Bosons, fermions and anyons in the plane, and supersymmetry”, Ann. Physics, 325 (2010), 1931–1975 ; arXiv: 1001.0274 | DOI | MR | Zbl
[14] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[15] Ismail M.E.H., Letessier J., Valent G., “Quadratic birth and death processes and associated continuous dual {H}ahn polynomials”, SIAM J. Math. Anal., 20 (1989), 727–737 | DOI | MR | Zbl
[16] Jafarov E.I., Stoilova N.I., Van der Jeugt J., “Finite oscillator models: the Hahn oscillator”, J. Phys. A: Math. Theor., 44 (2011), 265203, 15 pp. ; arXiv: 1101.5310 | DOI | Zbl
[17] Jafarov E.I., Stoilova N.I., Van der Jeugt J., “The $\mathfrak{su}(2)_\alpha$ Hahn oscillator and a discrete Fourier–Hahn transform”, J. Phys. A: Math. Theor., 44 (2011), 355205, 18 pp. ; arXiv: 1106.1083 | DOI | Zbl
[18] Klimyk A.U., “On position and momentum operators in the $q$-oscillator”, J. Phys. A: Math. Gen., 38 (2005), 4447–4458 | DOI | MR | Zbl
[19] Klimyk A.U., “The $su(1,1)$-models of quantum oscillator”, Ukr. J. Phys., 51 (2006), 1019–1027
[20] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[21] Koelink H.T., Van Der Jeugt J., “Convolutions for orthogonal polynomials from Lie and quantum algebra representations”, SIAM J. Math. Anal., 29 (1998), 794–822 ; arXiv: q-alg/9607010 | DOI | MR | Zbl
[22] Koornwinder T.H., “Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials”, Orthogonal Polynomials and their Applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 46–72 | DOI | MR
[23] Koornwinder T.H., “Krawtchouk polynomials, a unification of two different group theoretic interpretations”, SIAM J. Math. Anal., 13 (1982), 1011–1023 | DOI | MR | Zbl
[24] Macfarlane A.J., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $\mathrm{SU}(2)_q$”, J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl
[25] Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, University of Tokyo Press, Tokyo, 1982 | MR | Zbl
[26] Plyushchay M.S., “Deformed {H}eisenberg algebra with reflection”, Nuclear Phys. B, 491 (1997), 619–634 ; arXiv: hep-th/9701091 | DOI | MR | Zbl
[27] Post S., Vinet L., Zhedanov A., “Supersymmetric quantum mechanics with reflections”, J. Phys. A: Math. Theor., 44 (2011), 435301, 15 pp. ; arXiv: 1107.5844 | DOI | MR | Zbl
[28] Regniers G., Van der Jeugt J., “Wigner quantization of some one-dimensional Hamiltonians”, J. Math. Phys., 51 (2010), 123515, 21 pp. ; arXiv: 1011.2305 | DOI | MR
[29] Slater L.J., Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966 | MR | Zbl
[30] Srinivasa Rao K., Van der Jeugt J., Raynal J., Jagannathan R., Rajeswari V., “Group theoretical basis for the terminating ${}_3F_2(1)$ series”, J. Phys. A: Math. Gen., 25 (1992), 861–876 | DOI | MR | Zbl
[31] Sun C.P., Fu H.C., “The $q$-deformed boson realisation of the quantum group $\mathrm{SU}(n)_q$ and its representations”, J. Phys. A: Math. Gen., 22 (1989), L983–L986 | DOI | MR | Zbl
[32] Tsujimoto S., Vinet L., Zhedanov A., “From $sl_q(2)$ to a parabosonic Hopf algebra”, SIGMA, 7 (2011), 093, 13 pp. ; arXiv: 1108.1603 | DOI
[33] Tsujimoto S., Vinet L., Zhedanov A., “Jordan algebras and orthogonal polynomials”, J. Math. Phys., 52 (2011), 103512, 8 pp. ; arXiv: 1108.3531 | DOI | MR