Classification of traces and associated determinants on odd-class operators in odd dimensions
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To supplement the already known classification of traces on classical pseudodifferential operators, we present a classification of traces on the algebras of odd-class pseudodifferential operators of non-positive order acting on smooth functions on a closed odd-dimensional manifold. By means of the one to one correspondence between continuous traces on Lie algebras and determinants on the associated regular Lie groups, we give a classification of determinants on the group associated to the algebra of odd-class pseudodifferential operators with fixed non-positive order. At the end we discuss two possible ways to extend the definition of a determinant outside a neighborhood of the identity on the Lie group associated to the algebra of odd-class pseudodifferential operators of order zero.
Keywords: pseudodifferential operators, odd-class, trace, determinant, logarithm, regular Lie group.
@article{SIGMA_2012_8_a22,
     author = {Carolina Neira Jim\'enez and Marie Fran\c{c}oise Ouedraogo},
     title = {Classification of traces and associated determinants on odd-class operators in odd dimensions},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a22/}
}
TY  - JOUR
AU  - Carolina Neira Jiménez
AU  - Marie Françoise Ouedraogo
TI  - Classification of traces and associated determinants on odd-class operators in odd dimensions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a22/
LA  - en
ID  - SIGMA_2012_8_a22
ER  - 
%0 Journal Article
%A Carolina Neira Jiménez
%A Marie Françoise Ouedraogo
%T Classification of traces and associated determinants on odd-class operators in odd dimensions
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a22/
%G en
%F SIGMA_2012_8_a22
Carolina Neira Jiménez; Marie Françoise Ouedraogo. Classification of traces and associated determinants on odd-class operators in odd dimensions. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a22/

[1] Braverman M., “Symmetrized trace and symmetrized determinant of odd class pseudo-differential operators”, J. Geom. Phys., 59 (2009), 459–474 ; arXiv: math-ph/0702060 | DOI | MR | Zbl

[2] De la Harpe P., Skandalis G., “Déterminant associé à une trace sur une algébre de Banach”, Ann. Inst. Fourier (Grenoble), 34 (1984), 241–260 | DOI | MR | Zbl

[3] Ducourtioux C., Weighted traces on pseudodifferential operators and associated determinants, Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, 2001

[4] Fedosov B.V., Golse F., Leichtnam E., Schrohe E., “The noncommutative residue for manifolds with boundary”, J. Funct. Anal., 142 (1996), 1–31 | DOI | MR | Zbl

[5] Grubb G., “A resolvent approach to traces and zeta {L}aurent expansions”, Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005, 67–93 ; arXiv: math.AP/0311081 | DOI | MR | Zbl

[6] Guillemin V., “A new proof of Weyl's formula on the asymptotic distribution of eigenvalues”, Adv. Math., 55 (1985), 131–160 | DOI | MR | Zbl

[7] Guillemin V., “Residue traces for certain algebras of Fourier integral operators”, J. Funct. Anal., 115 (1993), 391–417 | DOI | MR | Zbl

[8] Kontsevich M., Vishik S., Determinants of elliptic pseudodifferential operators, arXiv: hep-th/9404046

[9] Kriegl A., Michor P.W., The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, RI, 1997 | MR | Zbl

[10] Lesch M., “On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols”, Ann. Global Anal. Geom., 17 (1999), 151–187 ; arXiv: dg-ga/9708010 | DOI | MR | Zbl

[11] Lesch M., “Pseudodifferential operators and regularized traces”, Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Math. Proc., 12, Amer. Math. Soc., Providence, RI, 2010, 37–72 ; arXiv: 0901.1689 | MR | Zbl

[12] Lesch M., Neira Jiménez C., Classification of traces and hypertraces on spaces of classical pseudodifferential operators, arXiv: 1011.3238

[13] Lescure J.M., Paycha S., “Uniqueness of multiplicative determinants on elliptic pseudodifferential operators”, Proc. Lond. Math. Soc. (3), 94 (2007), 772–812 | DOI | MR | Zbl

[14] Maniccia L., Schrohe E., Seiler J., “Uniqueness of the Kontsevich–Vishik trace”, Proc. Amer. Math. Soc., 136 (2008), 747–752 ; arXiv: math.FA/0702250 | DOI | MR | Zbl

[15] Mickelsson J., Current algebras and groups, Plenum Monographs in Nonlinear Physics, Plenum Press, New York, 1989 | MR | Zbl

[16] Milnor J., “Remarks on infinite-dimensional Lie groups”, Relativity, Groups and Topology II (Les Houches, 1983), North-Holland, Amsterdam, 1984, 1007–1057 | MR

[17] Neira Jiménez C., Cohomology of classes of symbols and classification of traces on corresponding classes of operators with non positive order, Ph.D. thesis, Universität Bonn, 2009, available at http://hss.ulb.uni-bonn.de/2010/2214/2214.htm

[18] Okikiolu K., “The Campbell–Hausdorff theorem for elliptic operators and a related trace formula”, Duke Math. J., 79 (1995), 687–722 | DOI | MR | Zbl

[19] Omori H., Maeda Y., Yoshioka A., Kobayashi O., “On regular Fréchet–Lie groups. IV. Definition and fundamental theorems”, Tokyo J. Math., 5 (1982), 365–398 | DOI | MR | Zbl

[20] Ouedraogo M.F., “A symmetrized canonical determinant on odd-class pseudodifferential operators”, Geometric and Topological Methods for Quantum Field Theory, Cambridge Univ. Press, Cambridge, 2010, 381–393 | DOI | MR | Zbl

[21] Ouedraogo M.F., Extension of the canonical trace and associated determinants, Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, 2009

[22] Paycha S., The noncommutative residue and canonical trace in the light of Stokes' and continuity properties, arXiv: 0706.2552

[23] Paycha S., Rosenberg S., “Traces and characteristic classes on loop spaces”, Infinite Dimensional Groups and Manifolds, IRMA Lect. Math. Theor. Phys., 5, de Gruyter, Berlin, 2004, 185–212 | MR | Zbl

[24] Paycha S., Scott S., “A Laurent expansion for regularized integrals of holomorphic symbols”, Geom. Funct. Anal., 17 (2007), 491–536 ; arXiv: math.AP/0506211 | DOI | MR | Zbl

[25] Ponge R.,, “Spectral asymmetry, zeta functions, and the noncommutative residue”, Internat. J. Math., 17 (2006), 1065–1090 ; arXiv: math.DG/0310102 | DOI | MR | Zbl

[26] Ponge R., “Traces on pseudodifferential operators and sums of commutators”, J. Anal. Math., 110 (2010), 1–30 ; arXiv: 0707.4265 | DOI | MR | Zbl

[27] Scott S., “The residue determinant”, Comm. Partial Differential Equations, 30 (2005), 483–507 ; arXiv: math.AP/0406268 | DOI | MR | Zbl

[28] Seeley R.T., “Complex powers of an elliptic operator”, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, 288–307 | MR

[29] Shubin M.A., Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001 | MR

[30] Simon B., Trace ideals and their applications, London Mathematical Society Lecture Note Series, 35, Cambridge University Press, Cambridge, 1979 | MR | Zbl

[31] Wodzicki M., “Noncommutative residue. I. Fundamentals”, $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | DOI | MR

[32] Wodzicki M., Spectral asymmetry and noncommutative residue, Thesis, Steklov Institute, Soviet Academy of Sciences, Moscow, 1984

[33] Yoshioka A., Maeda Y., Omori H., Kobayashi O., “On regular Fréchet–Lie groups. VII. The group generated by pseudodifferential operators of negative order”, Tokyo J. Math., 7 (1984), 315–336 | DOI | MR | Zbl