Conformally equivariant quantization – a complete classification
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conformally equivariant quantization is a peculiar map between symbols of real weight $\delta$ and differential operators acting on tensor densities, whose real weights are designed by $\lambda$ and $\lambda+\delta$. The existence and uniqueness of such a map has been proved by Duval, Lecomte and Ovsienko for a generic weight $\delta$. Later, Silhan has determined the critical values of $\delta$ for which unique existence is lost, and conjectured that for those values of $\delta$ existence is lost for a generic weight $\lambda$. We fully determine the cases of existence and uniqueness of the conformally equivariant quantization in terms of the values of $\delta$ and $\lambda$. Namely, (i) unique existence is lost if and only if there is a nontrivial conformally invariant differential operator on the space of symbols of weight $\delta$, and (ii) in that case the conformally equivariant quantization exists only for a finite number of $\lambda$, corresponding to nontrivial conformally invariant differential operators on $\lambda$-densities. The assertion (i) is proved in the more general context of IFFT (or AHS) equivariant quantization.
Keywords: (bi-)differential operators, Lie algebra cohomology.
Mots-clés : quantization, conformal invariance
@article{SIGMA_2012_8_a21,
     author = {Jean-Philippe Michel},
     title = {Conformally equivariant quantization~{\textendash} a~complete classification},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a21/}
}
TY  - JOUR
AU  - Jean-Philippe Michel
TI  - Conformally equivariant quantization – a complete classification
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a21/
LA  - en
ID  - SIGMA_2012_8_a21
ER  - 
%0 Journal Article
%A Jean-Philippe Michel
%T Conformally equivariant quantization – a complete classification
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a21/
%G en
%F SIGMA_2012_8_a21
Jean-Philippe Michel. Conformally equivariant quantization – a complete classification. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a21/

[1] Beckmann R., Clerc J.L., “Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group”, J. Funct. Anal., 262 (2012), 4341–4376 | DOI

[2] Boe B.D., Collingwood D.H., “A comparison theory for the structure of induced representations”, J. Algebra, 94 (1985), 511–545 | DOI | MR | Zbl

[3] Boe B.D., Collingwood D.H., “A comparison theory for the structure of induced representations. II”, Math. Z., 190 (1985), 1–11 | DOI | MR | Zbl

[4] Boniver F., Mathonet P., “IFFT-equivariant quantizations”, J. Geom. Phys., 56 (2006), 712–730 ; arXiv: math.RT/0109032 | DOI | MR | Zbl

[5] Boniver F., Mathonet P., “Maximal subalgebras of vector fields for equivariant quantizations”, J. Math. Phys., 42 (2001), 582–589 ; arXiv: math.DG/0009239 | DOI | MR | Zbl

[6] Cap A., Silhan J., “Equivariant quantizations for AHS-structures”, Adv. Math., 224 (2010), 1717–1734 ; arXiv: 0904.3278 | DOI | MR | Zbl

[7] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1999–2029 ; arXiv: math.DG/9902032 | DOI | MR | Zbl

[8] Duval C., Ovsienko V., “Conformally equivariant quantum Hamiltonians”, Selecta Math. (N.S.), 7 (2001), 291–320 ; arXiv: math.DG/9801122 | DOI | MR | Zbl

[9] Duval C., Ovsienko V., “Projectively equivariant quantization and symbol calculus: noncommutative hypergeometric functions”, Lett. Math. Phys., 57 (2001), 61–67 ; arXiv: math.QA/0103096 | DOI | MR | Zbl

[10] Eastwood M., Slovák J., “Semiholonomic Verma modules”, J. Algebra, 197 (1997), 424–448 | DOI | MR | Zbl

[11] Eastwood M.G., Rice J.W., “Conformally invariant differential operators on Minkowski space and their curved analogues”, Comm. Math. Phys., 109 (1987), 207–228 ; “Erratum”, Comm. Math. Phys., 144 (1992), 213 | DOI | MR | Zbl | DOI | MR | Zbl

[12] Fuks D.B., Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986 | MR

[13] Kobayashi S., Nagano T., “On filtered Lie algebras and geometric structures. I”, J. Math. Mech., 13 (1964), 875–907 | DOI | MR | Zbl

[14] Kroeske J., Invariant bilinear differential pairings on parabolic geometries, Ph.D. thesis, University of Adelaide, 2008 ; arXiv: 0904.3311 | Zbl

[15] Kroeske J., “Invariant differential pairings”, Acta Math. Univ. Comenian. (N.S.), 77 (2008), 215–244 ; arXiv: math.DG/0703866 | MR | Zbl

[16] Lecomte P.B.A., “On the cohomology of $\mathrm{sl}(m+1,\mathbb R)$ acting on differential operators and $\mathrm{sl}(m+1,\mathbb R)$-equivariant symbol”, Indag. Math. (N.S.), 11 (2000), 95–114 ; arXiv: math.DG/9801121 | DOI | MR | Zbl

[17] Lecomte P.B.A., Ovsienko V.Y., “Projectively equivariant symbol calculus”, Lett. Math. Phys., 49 (1999), 173–196 ; arXiv: math.DG/9809061 | DOI | MR | Zbl

[18] Loubon Djounga S.E., “Modules of third-order differential operators on a conformally flat manifold”, J. Geom. Phys., 37 (2001), 251–261 | DOI | MR | Zbl

[19] Mathonet P., Radoux F., “Cartan connections and natural and projectively equivariant quantizations”, J. Lond. Math. Soc. (2), 76 (2007), 87–104 ; arXiv: math.DG/0606556 | DOI | MR | Zbl

[20] Mathonet P., Radoux F., “Existence of natural and conformally invariant quantizations of arbitrary symbols”, J. Nonlinear Math. Phys., 17 (2010), 539–556 ; arXiv: 0811.3710 | DOI | MR | Zbl

[21] Nikitin A.G., Prilipko A.I., Generalized Killing tensors and the symmetry of the Klein–Gordon–Fock equation, Preprint no. 90.23, Institute of Mathematics, Kyiv, 1990, 59 pp. ; arXiv: math-ph/0506002 | MR

[22] Ovsienko V., Redou P., “Generalized transvectants-Rankin–Cohen brackets”, Lett. Math. Phys., 63 (2003), 19–28 ; arXiv: math.DG/0104232 | DOI | MR | Zbl

[23] Silhan J., Conformally invariant quantization – towards complete classification, arXiv: 0903.4798

[24] Weyl H., The classical groups. Their invariants and representations, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl

[25] Wünsch V., “On conformally invariant differential operators”, Math. Nachr., 129 (1986), 269–281 | DOI | MR