Lagrange anchor and characteristic symmetries of free massless fields
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin $s>1/2$ in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perform the path-integral quantization of the theory.
Keywords: symmetries, conservation laws, Bargmann–Wigner equations, Lagrange anchor.
@article{SIGMA_2012_8_a20,
     author = {Dmitry S. Kaparulin and Simon L. Lyakhovich and Alexey A. Sharapov},
     title = {Lagrange anchor and characteristic symmetries of free massless fields},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a20/}
}
TY  - JOUR
AU  - Dmitry S. Kaparulin
AU  - Simon L. Lyakhovich
AU  - Alexey A. Sharapov
TI  - Lagrange anchor and characteristic symmetries of free massless fields
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a20/
LA  - en
ID  - SIGMA_2012_8_a20
ER  - 
%0 Journal Article
%A Dmitry S. Kaparulin
%A Simon L. Lyakhovich
%A Alexey A. Sharapov
%T Lagrange anchor and characteristic symmetries of free massless fields
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a20/
%G en
%F SIGMA_2012_8_a20
Dmitry S. Kaparulin; Simon L. Lyakhovich; Alexey A. Sharapov. Lagrange anchor and characteristic symmetries of free massless fields. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a20/

[1] Anco S.C., Bluman G., “Direct construction of conservation laws from field equations”, Phys. Rev. Lett., 78 (1997), 2869–2873 | DOI | MR | Zbl

[2] Anco S.C., Pohjanpelto J., “Classification of local conservation laws of Maxwell's equations”, Acta Appl. Math., 69 (2001), 285–327 ; arXiv: math-ph/0108017 | DOI | MR | Zbl

[3] Anco S.C., Pohjanpelto J., “Conserved currents of massless fields of spin $s\geq\frac 12$”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1215–1239 ; arXiv: math-ph/0202019 | DOI | MR | Zbl

[4] Barnich G., Brandt F., Henneaux M., “Local BRST cohomology in the antifield formalism. I. General theorems”, Comm. Math. Phys., 174 (1995), 57–91 ; arXiv: hep-th/9405109 | DOI | MR | Zbl

[5] Barnich G., Henneaux M., “Isomorphisms between the Batalin–Vilkovisky antibracket and the Poisson bracket”, J. Math. Phys., 37 (1996), 5273–5296 ; arXiv: hep-th/9601124 | DOI | MR | Zbl

[6] Bluman G.W., Cheviakov A.F., Anco S.C., Applications of symmetry methods to partial differential equations, Applied Mathematical Sciences, 168, Springer, New York, 2010 | DOI | MR | Zbl

[7] DeWitt B.S., Dynamical theory of groups and fields, Gordon and Breach Science Publishers, New York, 1965 | MR

[8] Dickey L.A., Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, 12, World Scientific Publishing Co. Inc., River Edge, NJ, 1991 | MR | Zbl

[9] Dubois-Violette M., Henneaux M., Talon M., Viallet C.M., “Some results on local cohomologies in field theory”, Phys. Lett. B, 267 (1991), 81–87 | DOI | MR

[10] Fairlie D.B., “Conservation laws and invariance principles”, Nuovo Cimento, 37 (1965), 897–904 | DOI | MR | Zbl

[11] Fang J., Fronsdal C., “Massless fields with half-integral spin”, Phys. Rev. D, 18 (1978), 3630–3633 | DOI

[12] Fronsdal C., “Massless fields with integer spin”, Phys. Rev. D, 18 (1978), 3624–3629 | DOI

[13] Fushchich W.I., Nikitin A.G., Symmetries of equations of quantum mechanics, Allerton Press Inc., New York, 1994 | MR | Zbl

[14] Kaparulin D.S., Lyakhovich S.L., Sharapov A.A., “Rigid symmetries and conservation laws in non-Lagrangian field theory”, J. Math. Phys., 51 (2010), 082902, 22 pp. ; arXiv: 1001.0091 | DOI | MR | Zbl

[15] Kazinski P.O., Lyakhovich S.L., Sharapov A.A., “Lagrange structure and quantization”, J. High Energy Phys., 2005 (2005), 076, 42 pp. ; arXiv: hep-th/0506093 | DOI | MR

[16] Kazinski P.O., Lyakhovich S.L., Sharapov A.A., “Local BRST cohomology in (non-)Lagrangian field theory”, J. High Energy Phys., 2011 (2011), 006, 34 pp. ; arXiv: 1106.4252 | DOI

[17] Kibble T.W.B., “Conservation laws for free fields”, J. Math. Phys., 6 (1965), 1022–1026 | DOI | MR

[18] Konstein S.E., Vasiliev M.A., Zaikin V.N., “Conformal higher spin currents in any dimension and AdS/CFT correspondence”, J. High Energy Phys., 2000 (2000), 018, 12 pp. ; arXiv: hep-th/0010239 | DOI | MR | Zbl

[19] Kosmann-Schwarzbach Y., The Noether theorems, Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York, 2011 | MR | Zbl

[20] Lipkin D.M., “Existence of a new conservation law in electromagnetic theory”, J. Math. Phys., 5 (1964), 696–700 | DOI | MR | Zbl

[21] Lyakhovich S.L., Sharapov A.A., “Quantizing non-Lagrangian gauge theories: an augmentation method”, J. High Energy Phys., 2007 (2007), 047, 40 pp. ; arXiv: hep-th/0612086 | DOI | MR

[22] Lyakhovich S.L., Sharapov A.A., “Schwinger–Dyson equation for non-Lagrangian field theory”, J. High Energy Phys., 2006 (2006), 007, 27 pp. ; arXiv: hep-th/0512119 | DOI | MR

[23] Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[24] Morgan T.A., “Two classes of new conservation laws for the electromagnetic field and for other massless fields”, J. Math. Phys., 5 (1964), 1659–1660 | DOI | MR | Zbl

[25] Năstăsescu C., Van Oystaeyen F., Graded and filtered rings and modules, Lecture Notes in Mathematics, 758, Springer, Berlin, 1979 | MR

[26] Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl

[27] Penrose R., Rindler W., Spinors and space-time, v. I and II, Cambridge University Press, Cambridge, 1987 | MR

[28] Pohjanpelto J., Anco S.C., “Generalized symmetries of massless free fields on Minkowski space”, SIGMA, 4 (2008), 004, 17 pp. ; arXiv: 0801.1892 | DOI | MR | Zbl

[29] Streater R.F., Wightman A.S., PCT, spin and statistics, and all that, W.A. Benjamin, Inc., New York – Amsterdam, 1964 | MR | Zbl

[30] Vasiliev M.A., “Consistent equations for interacting gauge fields of all spins in $3+1$ dimensions”, Phys. Lett. B, 243 (1990), 378–382 | DOI | MR

[31] Vasiliev M.A., “Higher spin gauge theories in various dimensions”, Fortschr. Phys., 52 (2004), 702–717 ; arXiv: hep-th/0401177 | DOI | MR | Zbl

[32] Vasiliev M.A., Gelfond O.A., Skvortsov E.D., “Higher-spin conformal currents in Minkowski space”, Theoret. Math. Phys., 154 (2008), 294–302 ; arXiv: hep-th/0601106 | DOI | MR | Zbl