Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
Keywords: index, supersymmetry.
Mots-clés : Dolbeault
@article{SIGMA_2012_8_a2,
     author = {Andrei V. Smilga},
     title = {Supersymmetric proof of the {Hirzebruch{\textendash}Riemann{\textendash}Roch} theorem for {non-K\"ahler} manifolds},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a2/}
}
TY  - JOUR
AU  - Andrei V. Smilga
TI  - Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a2/
LA  - en
ID  - SIGMA_2012_8_a2
ER  - 
%0 Journal Article
%A Andrei V. Smilga
%T Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a2/
%G en
%F SIGMA_2012_8_a2
Andrei V. Smilga. Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a2/

[1] Witten E., “Quantum field theory and Jones polynomials”, Comm. Math. Phys., 121 (1989), 351–399 http://projecteuclid.org/getRecord?id=euclid.cmp/1104178138 | DOI | MR | Zbl

[2] Atiyah M.F., Singer I.M., “The index of elliptic operators. I”, Ann. of Math. (2), 87 (1968), 484–530 ; Atiyah M.F., Singer I.M., “The index of elliptic operators. III”, Ann. of Math. (2), 87 (1968), 546–604 ; Atiyah M.F., Singer I.M., “The index of elliptic operators. IV”, Ann. of Math. (2), 93 (1971), 119–138 ; Atiyah M.F., Singer I.M., “The index of elliptic operators. V”, Ann. of Math. (2), 93 (1971), 139–149 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[3] Alvarez-Gaumé L., “Supersymmetry and the Atiyah–Singer index theorem”, Comm. Math. Phys., 90 (1983), 161–173 ; Friedan D., Windey P., “Supersymmetric derivation of the Atiyah–Singer index and the chiral anomaly”, Nuclear Phys. B, 235 (1984), 395–416 ; Windey P., “Supersymmetric quantum mechanics and the Atiyah–Singer index theorem”, Acta Phys. Polon. B, 15 (1984), 435–452 | DOI | MR | Zbl | DOI | MR | MR

[4] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 ; Witten E., “Constraints on supersymmetry breaking”, Nuclear Phys. B, 202 (1982), 253–316 | DOI | DOI | MR

[5] Ivanov E.A., Smilga A.V., Dirac operator on complex manifolds and supersymmetric quantum mechanics, arXiv: 1012.2069

[6] Bismut J.-M., “A local index theorem for non-Kähler manifolds”, Math. Ann., 284 (1989), 681–699 | DOI | MR | Zbl

[7] Braden H.W., “Sigma-models with torsion”, Ann. Physics, 171 (1986), 433–462 | DOI | MR | Zbl

[8] Mavromatos N.E., “A note on the Atiyah–Singer index theorem for manifolds with totally antisymmetric $H$ torsion”, J. Phys. A: Math. Gen., 21 (1988), 2279–2290 | DOI | MR | Zbl

[9] Fedoruk S.A., Ivanov E.A., Smilga A.V., Real and complex supersymmetric $d=1$ sigma models with torsion, in preparation

[10] Kirchberg A., Länge J.D., Wipf A., “Extended supersymmetries and the Dirac operator”, Ann. Physics, 315 (2005), 467–487 ; arXiv: hep-th/0401134 | DOI | MR | Zbl

[11] Smilga A.V., “Dolbeault complex on $S^4\setminus \{\,\cdot\,\}$ and $S^6\setminus\{\,\cdot\,\}$ through supersymmetric glasses”, SIGMA, 7 (2011), 105, 14 pp. ; arXiv: 1105.3935 | DOI

[12] Cecotti S., Girardello L., “Functional measure, topology and dynamical supersymmetry breaking”, Phys. Lett. B, 110 (1982), 39–43 ; Girardello L., Imbimbo C., Mukhi S., “On constant configurations and evaluation of the Witten index”, Phys. Lett. B, 132 (1983), 69–74 | DOI | MR | DOI | MR

[13] Obukhov Y.N., “Spectral geometry of the Riemann–Cartan space-time”, Nuclear Phys. B, 212 (1983), 237–254 ; Peeters K., Waldron A., “Spinors on manifolds with boundary: APS index theorem with torsion”, J. High Energy Phys., 1999:2 (1999), 024, 42 pp., arXiv: hep-th/9901016 | DOI | MR | DOI | MR | Zbl

[14] Gauduchon P., “Le théorème de l'excentricité nulle”, C. R. Acad. Sci. Paris Sér. A-B, 285 (1977), A387–A390 | MR

[15] Hirzebruch F., “Arithmetic genera and the theorem of Riemann–Roch for algebraic varietes”, Proc. Nat. Acad. Sci. USA, 40 (1954), 110–114 ; Hirzebruch F., Topological methods in algebraic geometry, Springer-Verlag, Berlin, 1978 | DOI | MR | Zbl | MR | Zbl

[16] Wu Y.S., Zee A., “Massless fermions and Kaluza–Klein theory with torsion”, J. Math. Phys., 25 (1984), 2696–2703 | DOI | MR

[17] Smilga A.V., Non-integer flux: why it does not work, arXiv: 1104.3986