Tippe Top equations and equations for the related mechanical systems
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equations of motion for the rolling and gliding Tippe Top (TT) are nonintegrable and difficult to analyze. The only existing arguments about TT inversion are based on analysis of stability of asymptotic solutions and the LaSalle type theorem. They do not explain the dynamics of inversion. To approach this problem we review and analyze here the equations of motion for the rolling and gliding TT in three equivalent forms, each one providing different bits of information about motion of TT. They lead to the main equation for the TT, which describes well the oscillatory character of motion of the symmetry axis $\mathbf{\hat{3}}$ during the inversion. We show also that the equations of motion of TT give rise to equations of motion for two other simpler mechanical systems: the gliding heavy symmetric top and the gliding eccentric cylinder. These systems can be of aid in understanding the dynamics of the inverting TT.
Keywords: tippe top, rigid body, nonholonomic mechanics, integrals of motion, stability, gliding friction.
@article{SIGMA_2012_8_a18,
     author = {Nils Rutstam},
     title = {Tippe {Top} equations and equations for the related mechanical systems},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a18/}
}
TY  - JOUR
AU  - Nils Rutstam
TI  - Tippe Top equations and equations for the related mechanical systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a18/
LA  - en
ID  - SIGMA_2012_8_a18
ER  - 
%0 Journal Article
%A Nils Rutstam
%T Tippe Top equations and equations for the related mechanical systems
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a18/
%G en
%F SIGMA_2012_8_a18
Nils Rutstam. Tippe Top equations and equations for the related mechanical systems. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a18/

[1] Bou-Rabee N.M., Marsden J.E., Romero L.A., “Tippe top inversion as a dissipation-induced instability”, SIAM J. Appl. Dyn. Syst., 3 (2004), 352–377 | DOI | MR | Zbl

[2] Chaplygin S.A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7 (2002), 131–148 | DOI | MR | Zbl

[3] Chaplygin S.A., “On a motion of a heavy body of revolution on a horizontal plane”, Regul. Chaotic Dyn., 7 (2002), 119–130 | DOI | MR | Zbl

[4] Ciocci M.C., Langerock B., “Dynamics of the tippe top via Routhian reduction”, Regul. Chaotic Dyn., 12 (2007), 602–614 ; arXiv: 0704.1221 | DOI | MR | Zbl

[5] Cohen R.J., “The tippe top revisited”, Amer. J. Phys., 45 (1977), 12–17 | DOI

[6] Del Campo A.R., “Tippe top (topsy-turnee top) continued”, Amer. J. Phys., 23 (1955), 544–545 | DOI

[7] Ebenfeld S., Scheck F., “A new analysis of the tippe top: asymptotic states and Liapunov stability”, Ann. Physics, 243 (1995), 195–217 ; arXiv: chao-dyn/9501008 | DOI | MR | Zbl

[8] Glad S.T., Petersson D., Rauch-Wojciechowski S., “Phase space of rolling solutions of the tippe top”, SIGMA, 3 (2007), 041, 14 pp. ; arXiv: nlin.SI/0703016 | DOI | MR | Zbl

[9] Hugenholtz N.M., “On tops rising by friction”, Physica, 18 (1952), 515–527 | DOI | MR | Zbl

[10] Karapetyan A.V., “Global qualitative analysis of tippe top dynamics”, Mech. Sol., 43 (1995), 342–348 | DOI

[11] Karapetyan A.V., “Qualitative investigation of the dynamics of a top on a plane with friction”, J. Appl. Math. Mech., 55 (1991), 563–565 | DOI | MR | Zbl

[12] Karapetyan A.V., Kuleshov A.S., “Steady motions of nonholonomic systems”, Regul. Chaotic Dyn., 7 (2002), 81–117 | DOI | MR | Zbl

[13] LaSalle J.P., “Some extensions of Liapunov's second method”, IRE Trans., 7 (1960), 520–527 | MR

[14] Moffatt H.K., Shimomura Y., “Classical dynamics: spinning eggs – a paradox resolved”, Nature, 416 (2002), 385–386 | DOI

[15] Moffatt H.K., Shimomura Y., Branicki M., “Dynamics of an axisymmetric body spinning on a horizontal surface. I. Stability and the gyroscopic approximation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 3643–3672 | DOI | MR | Zbl

[16] Or A.C., “The dynamics of a tippe top”, SIAM J. Appl. Math., 54 (1994), 597–609 | DOI | MR | Zbl

[17] Pliskin W.A., “The tippe top (topsy-turvy top)”, Amer. J. Phys., 22 (1954), 28–32 | DOI | Zbl

[18] Rauch-Wojciechowski S., “What does it mean to explain the rising of the tippe top?”, Regul. Chaotic Dyn., 13 (2008), 316–331 | DOI | MR | Zbl

[19] Rauch-Wojciechowski S., Sköldstam M., Glad T., “Mathematical analysis of the tippe top”, Regul. Chaotic Dyn., 10 (2005), 333–362 | DOI | MR | Zbl

[20] Routh E.J., The advanced part of a treatise on the dynamics of a system of rigid bodies. Being part II of a treatise on the whole subject, 6th ed., Dover Publications Inc., New York, 1955 | MR | Zbl

[21] Rutstam N., Study of equations for tippe top and related rigid bodies, Linköping Studies in Science and Technology, Theses No. 1106, Matematiska Institutionen, Linköpings Universitet, 2010 available at http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60835

[22] Ueda T., Sasaki K., Watanabe S., “Motion of the tippe top: gyroscopic balance condition and stability”, SIAM J. Appl. Dyn. Syst., 4 (2005), 1159–1194 ; arXiv: physics/0507198 | DOI | MR | Zbl

[23] Zobova A.A., Karapetyan A.V., “Analysis of the steady motions of the tippe top”, J. Appl. Math. Mech., 73 (2009), 623–630 | DOI | MR