@article{SIGMA_2012_8_a17,
author = {Johannes Aastrup and Jesper M{\o}ller Grimstrup},
title = {Intersecting quantum gravity with noncommutative geometry {\textendash} a review},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a17/}
}
TY - JOUR AU - Johannes Aastrup AU - Jesper Møller Grimstrup TI - Intersecting quantum gravity with noncommutative geometry – a review JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a17/ LA - en ID - SIGMA_2012_8_a17 ER -
Johannes Aastrup; Jesper Møller Grimstrup. Intersecting quantum gravity with noncommutative geometry – a review. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a17/
[1] Aastrup J., Grimstrup J.M., From quantum gravity to quantum field theory via noncommutative geometry, arXiv: 1105.0194
[2] Aastrup J., Grimstrup J.M., “Intersecting Connes noncommutative geometry with quantum gravity”, Internat. J. Modern Phys. A, 22 (2007), 1589–1603 ; arXiv: hep-th/0601127 | DOI | MR | Zbl
[3] Aastrup J., Grimstrup J.M., “Spectral triples of holonomy loops”, Comm. Math. Phys., 264 (2006), 657–681 ; arXiv: hep-th/0503246 | DOI | MR | Zbl
[4] Aastrup J., Grimstrup J.M., Nest R., “A new spectral triple over a space of connections”, Comm. Math. Phys., 290 (2009), 389–398 ; arXiv: 0807.3664 | DOI | MR | Zbl
[5] Aastrup J., Grimstrup J.M., Nest R., “Holonomy loops, spectral triples and quantum gravity”, Classical Quantum Gravity, 26 (2009), 165001, 17 pp. ; arXiv: 0902.4191 | DOI | MR | Zbl
[6] Aastrup J., Grimstrup J.M., Nest R., “On spectral triples in quantum gravity. I”, Classical Quantum Gravity, 26 (2009), 065011, 53 pp. ; arXiv: 0802.1783 | DOI | MR | Zbl
[7] Aastrup J., Grimstrup J.M., Nest R., “On spectral triples in quantum gravity. II”, J. Noncommut. Geom., 3 (2009), 47–81 ; arXiv: 0802.1784 | DOI | MR | Zbl
[8] Aastrup J., Grimstrup J.M., Paschke M., Emergent Dirac Hamiltonians in quantum gravity, arXiv: 0911.2404
[9] Aastrup J., Grimstrup J.M., Paschke M., On a derivation of the Dirac Hamiltonian from a construction of quantum gravity, arXiv: 1003.3802
[10] Aastrup J., Grimstrup J.M., Paschke M., “Quantum gravity coupled to matter via noncommutative geometry”, Classical Quantum Gravity, 28 (2011), 075014, 10 pp. ; arXiv: 1012.0713 | DOI | MR | Zbl
[11] Aastrup J., Grimstrup J.M., Paschke M., Nest R., “On semi-classical states of quantum gravity and noncommutative geometry”, Comm. Math. Phys., 302 (2011), 675–696 ; arXiv: 0907.5510 | DOI | MR | Zbl
[12] Ashtekar A., “New Hamiltonian formulation of general relativity”, Phys. Rev. D, 36 (1987), 1587–1602 | DOI | MR
[13] Ashtekar A., “New variables for classical and quantum gravity”, Phys. Rev. Lett., 57 (1986), 2244–2247 | DOI | MR
[14] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152 ; arXiv: gr-qc/0404018 | DOI | MR | Zbl
[15] Ashtekar A., Lewandowski J., “Representation theory of analytic holonomy $C^*$-algebras”, Knots and Quantum Gravity (Riverside, CA, 1993), Oxford Lecture Ser. Math. Appl., 1, Oxford Univ. Press, New York, 1994, 21–61 ; arXiv: gr-qc/9311010 | MR | Zbl
[16] Bahr B., Thiemann T., “Gauge-invariant coherent states for loop quantum gravity. I. Abelian gauge groups”, Classical Quantum Gravity, 26 (2009), 045011, 22 pp. ; arXiv: 0709.4619 | DOI | MR | Zbl
[17] Bahr B., Thiemann T., “Gauge-invariant coherent states for loop quantum gravity. II. Non-Abelian gauge groups”, Classical Quantum Gravity, 26 (2009), 045012, 45 pp. ; arXiv: 0709.4636 | DOI | MR | Zbl
[18] Bellissard J., “$K$-theory of $C^*$-algebras in solid state physics”, Statistical Mechanics and Field Theory: Mathematical Aspects (Groningen, 1985), Lecture Notes in Phys., 257, Springer, Berlin, 1986, 99–156 | DOI | MR
[19] Bellissard J., “Ordinary quantum Hall effect and noncommutative cohomology”, Localization in Disordered Systems (Bad Schandau, 1986), Teubner-Texte Phys., 16, Teubner, Leipzig, 1988, 61–74 | MR
[20] Borchers H.J., “On revolutionizing quantum field theory with Tomita's modular theory”, J. Math. Phys., 41 (2000), 3604–3673 | DOI | MR | Zbl
[21] Bratteli O., Robinson D.W., Operator algebras and quantum statistical mechanics. I. $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, Texts and Monographs in Physics, 2nd ed., Springer-Verlag, New York, 1987 | MR | Zbl
[22] Bratteli O., Robinson D.W., Operator algebras and quantum statistical mechanics. II. Models in quantum statistical mechanics, Texts and Monographs in Physics, 2nd ed., Springer-Verlag, Berlin, 1997 | MR
[23] Ćaćić B., A reconstruction theorem for almost-commutative spectral triples, arXiv: 1101.5908 | Zbl
[24] Carey A.L., Phillips J., Sukochev F.A., “On unbounded $p$-summable Fredholm modules”, Adv. Math., 151 (2000), 140–163 ; arXiv: math.OA/9908091 | DOI | MR | Zbl
[25] Chamseddine A.H., Connes A., Marcolli M., “Gravity and the standard model with neutrino mixing”, Adv. Theor. Math. Phys., 11 (2007), 991–1089 ; arXiv: hep-th/0610241 | MR | Zbl
[26] Christensen E., Ivan C., “Sums of two-dimensional spectral triples”, Math. Scand., 100 (2007), 35–60 ; arXiv: math.OA/0601024 | MR | Zbl
[27] Connes A., “Gravity coupled with matter and the foundation of non-commutative geometry”, Comm. Math. Phys., 182 (1996), 155–176 ; arXiv: hep-th/9603053 | DOI | MR | Zbl
[28] Connes A., Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl
[29] Connes A., On the spectral characterization of manifolds, arXiv: 0810.2088
[30] Connes A., “Une classification des facteurs de type III”, Ann. Sci. École Norm. Sup. (4), 6 (1973), 133–252 | MR | Zbl
[31] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, American Mathematical Society, Providence, RI, 2008 (available at ) http://www.alainconnes.org/en/downloads.php | MR | Zbl
[32] Connes A., Rovelli C., “von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories”, Classical Quantum Gravity, 11 (1994), 2899–2917 ; arXiv: gr-qc/9406019 | DOI | MR | Zbl
[33] Denicola D., Marcolli M., Zainy al Yasry A., “Spin foams and noncommutative geometry”, Classical Quantum Gravity, 27 (2010), 205025, 53 pp. ; arXiv: 1005.1057 | DOI | MR | Zbl
[34] Doná P., Speziale S., Introductory lectures to loop quantum gravity, arXiv: 1007.0402
[35] Haag R., Local quantum physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 | MR
[36] Hall B.C., “Phase space bounds for quantum mechanics on a compact Lie group”, Comm. Math. Phys., 184 (1997), 233–250 | DOI | MR | Zbl
[37] Hall B.C., “The Segal–Bargmann “coherent state” transform for compact Lie groups”, J. Funct. Anal., 122 (1994), 103–151 | DOI | MR | Zbl
[38] Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, v. I, Graduate Studies in Mathematics, 15, American Mathematical Society, Providence, RI, 1997 | MR | Zbl
[39] Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, v. II, Graduate Studies in Mathematics, 16, American Mathematical Society, Providence, RI, 1997 | MR | Zbl
[40] Kaminski D., Algebras of quantum variables for loop quantum gravity. I. Overview, arXiv: 1108.4577
[41] Lai A., The JLO character for the noncommutative space of connections of Aastrup–Grimstrup–Nest, arXiv: 1010.5226
[42] Lewandowski J., Okolów A., “Quantum group connections”, J. Math. Phys., 50 (2009), 123522, 31 pp. ; arXiv: 0810.2992 | DOI | MR | Zbl
[43] Lord S., Rennie A., Varilly J.C., Riemannian manifolds in noncommutative geometry, arXiv: 1109.2196
[44] Martins R.D., An outlook on quantum gravity from an algebraic perspective, arXiv: 1003.4434
[45] Mislin G., Valette A., Proper group actions and the Baum–Connes conjecture, Advanced Courses in Mathematics, Birkhäuser Verlag, Basel, 2003 | MR | Zbl
[46] Nicolai H., Matschull H.J., “Aspects of canonical gravity and supergravity”, J. Geom. Phys., 11 (1993), 15–62 | DOI | MR | Zbl
[47] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[48] Sahlmann H., Loop quantum gravity – a short review, arXiv: 1001.4188
[49] Takesaki M., Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, 128, Springer-Verlag, Berlin, 1970 | MR | Zbl
[50] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 ; arXiv: gr-qc/0110034 | DOI | MR | Zbl
[51] Thiemann T., Winkler O., “Gauge field theory coherent states (GCS). IV. Infinite tensor product and thermodynamical limit”, Classical Quantum Gravity, 18 (2001), 4997–5053 ; arXiv: hep-th/0005235 | DOI | MR | Zbl