Introduction to loop quantum cosmology
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is an introduction to loop quantum cosmology (LQC) reviewing mini- and midisuperspace models as well as homogeneous and inhomogeneous effective dynamics.
Keywords: loop quantum cosmology, loop quantum gravity.
@article{SIGMA_2012_8_a15,
     author = {Kinjal Banerjee and Gianluca Calcagni and Mercedes Mart{\'\i}n-Benito},
     title = {Introduction to loop quantum cosmology},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a15/}
}
TY  - JOUR
AU  - Kinjal Banerjee
AU  - Gianluca Calcagni
AU  - Mercedes Martín-Benito
TI  - Introduction to loop quantum cosmology
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a15/
LA  - en
ID  - SIGMA_2012_8_a15
ER  - 
%0 Journal Article
%A Kinjal Banerjee
%A Gianluca Calcagni
%A Mercedes Martín-Benito
%T Introduction to loop quantum cosmology
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a15/
%G en
%F SIGMA_2012_8_a15
Kinjal Banerjee; Gianluca Calcagni; Mercedes Martín-Benito. Introduction to loop quantum cosmology. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a15/

[1] Arnowitt R., Deser S., Misner C.W., “The dynamics of general relativity”, Gravitation: an Introduction to Current Research, Wiley, New York, 1962, 227–265 | MR

[2] Ashtekar A., “An introduction to loop quantum gravity through cosmology”, Nuovo Cim., 122 (2007), 135–155 ; arXiv: gr-qc/0702030 | DOI | MR

[3] Ashtekar A., Lectures on nonperturbative canonical gravity, Advanced Series in Astrophysics and Cosmology, 6, World Scientific Publishing Co. Inc., River Edge, NJ, 1991 | MR | Zbl

[4] Ashtekar A., “Loop quantum cosmology: an overview”, Gen. Relativity Gravitation, 41 (2009), 707–741 ; arXiv: 0812.0177 | DOI | MR | Zbl

[5] Ashtekar A., “New Hamiltonian formulation of general relativity”, Phys. Rev. D, 36 (1987), 1587–1602 | DOI | MR

[6] Ashtekar A., “New variables for classical and quantum gravity”, Phys. Rev. Lett., 57 (1986), 2244–2247 | DOI | MR

[7] Ashtekar A., Baez J., Corichi A., Krasnov K., “Quantum geometry and black hole entropy”, Phys. Rev. Lett., 80 (1998), 904–907 ; arXiv: gr-qc/9710007 | DOI | MR | Zbl

[8] Ashtekar A., Baez J.C., Krasnov K., “Quantum geometry of isolated horizons and black hole entropy”, Adv. Theor. Math. Phys., 4 (2000), 1–94 ; arXiv: gr-qc/0005126 | MR | Zbl

[9] Ashtekar A., Bojowald M., Lewandowski J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7 (2003), 233–268 ; arXiv: gr-qc/0304074 | MR

[10] Ashtekar A., Campiglia M., Henderson A., “Casting loop quantum cosmology in the spin foam paradigm”, Classical Quantum Gravity, 27 (2010), 135020, 32 pp. ; arXiv: 1001.5147 | DOI | MR | Zbl

[11] Ashtekar A., Campiglia M., Henderson A., “Loop quantum cosmology and spin foams”, Phys. Lett. B, 681 (2009), 347–352 ; arXiv: 0909.4221 | DOI | MR

[12] Ashtekar A., Corichi A., Singh P., “Robustness of key features of loop quantum cosmology”, Phys. Rev. D, 77 (2008), 024046, 17 pp. ; arXiv: 0710.3565 | DOI | MR

[13] Ashtekar A., Isham C.J., “Representations of the holonomy algebras of gravity and nonabelian gauge theories”, Classical Quantum Gravity, 9 (1992), 1433–1467 | DOI | MR | Zbl

[14] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152 ; arXiv: gr-qc/0404018 | DOI | MR | Zbl

[15] Ashtekar A., Lewandowski J., “Projective techniques and functional integration for gauge theories”, J. Math. Phys., 36 (1995), 2170–2191 ; arXiv: gr-qc/9411046 | DOI | MR | Zbl

[16] Ashtekar A., Lewandowski J., “Quantum theory of geometry. I. Area operators”, Classical Quantum Gravity, 14 (1997), A55–A81 ; arXiv: gr-qc/9602046 | DOI | MR | Zbl

[17] Ashtekar A., Lewandowski J., “Representation theory of analytic holonomy $C^*$-algebras”, Knots and quantum gravity (Riverside, CA, 1993), Oxford Lecture Ser. Math. Appl., 1, Oxford Univ. Press, New York, 1994, 21–61 ; arXiv: gr-qc/9311010 | MR

[18] Ashtekar A., Lewandowski J., Marolf D., Mourão J., Thiemann T., “Quantization of diffeomorphism invariant theories of connections with local degrees of freedom”, J. Math. Phys., 36 (1995), 6456–6493 ; arXiv: gr-qc/9504018 | DOI | MR | Zbl

[19] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang”, Phys. Rev. Lett., 96 (2006), 141301, 4 pp. ; arXiv: gr-qc/0602086 | DOI | MR

[20] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: an analytical and numerical investigation”, Phys. Rev. D, 73 (2006), 124038, 33 pp. ; arXiv: gr-qc/0604013 | DOI | MR

[21] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: improved dynamics”, Phys. Rev. D, 74 (2006), 084003, 23 pp. ; arXiv: gr-qc/0607039 | DOI | MR | Zbl

[22] Ashtekar A., Pawlowski T., Singh P., Vandersloot K., “Loop quantum cosmology of $k=1$ FRW models”, Phys. Rev. D, 75 (2007), 024035, 26 pp. ; arXiv: gr-qc/0612104 | DOI | MR | Zbl

[23] Ashtekar A., Pullin J., “Bianchi cosmologies: a new description”, Developments in General Relativity, Astrophysics and Quantum Theory (Jerusalem and Haifa, 1989), Ann. Israel Phys. Soc., 9, IOP, Bristol, 1990, 65–76 | MR

[24] Ashtekar A., Singh P., “Loop quantum cosmology: a status report”, Classical Quantum Gravity, 28 (2011), 213001, 122 pp. ; arXiv: 1108.0893 | DOI | Zbl

[25] Ashtekar A., Wilson-Ewing E., “Loop quantum cosmology of Bianchi type I models”, Phys. Rev. D, 79 (2009), 083535, 21 pp. ; arXiv: 0903.3397 | DOI | MR

[26] Ashtekar A., Wilson-Ewing E., “Loop quantum cosmology of Bianchi type II models”, Phys. Rev. D, 80 (2009), 123532, 16 pp. ; arXiv: 0910.1278 | DOI | MR

[27] Baez J.C., “Generalized measures in gauge theory”, Lett. Math. Phys., 31 (1994), 213–223 ; arXiv: hep-th/9310201 | DOI | MR | Zbl

[28] Banerjee K., Date G., “Loop quantization of the polarized Gowdy model on $T^3$: classical theory”, Classical Quantum Gravity, 25 (2008), 105014, 15 pp. ; arXiv: 0712.0683 | DOI | MR | Zbl

[29] Banerjee K., Date G., “Loop quantization of the polarized Gowdy model on $T^3$: kinematical states and constraint operators”, Classical Quantum Gravity, 25 (2008), 145004, 18 pp. ; arXiv: 0712.0687 | DOI | MR | Zbl

[30] Barbero G. J.F., “Real Ashtekar variables for Lorentzian signature space-times”, Phys. Rev. D, 51 (1995), 5507–5510 ; arXiv: gr-qc/9410014 | DOI | MR

[31] Barbero G. J.F., Villaseñor E.J.S., “Quantization of midisuperspace models”, Living Rev. Relativ., 13 (2010), 6, 55 pp. ; arXiv: 1010.1637 | Zbl

[32] Bentivegna E., Pawlowski T., “Anti-de Sitter universe dynamics in loop quantum cosmology”, Phys. Rev. D, 77 (2008), 124025, 17 pp. ; arXiv: 0803.4446 | DOI | MR | Zbl

[33] Berger B.K., “Quantumgravitoncreation in a model universe”, Ann. Physics, 83 (1974), 458–490 | DOI

[34] Berger B.K., “Quantum cosmology: exact solution for the Gowdy $T^3$ model”, Phys. Rev. D, 11 (1975), 2770–2780 | DOI | MR

[35] Berger B.K., “Quantum effects in the Gowdy $T^3$ cosmology”, Ann. Physics, 156 (1984), 155–193 | DOI | MR | Zbl

[36] Bianchi E., Krajewski T., Rovelli C., Vidotto F., “Cosmological constant in spinfoam cosmology”, Phys. Rev. D, 83 (2011), 104015, 4 pp. ; arXiv: 1101.4049 | DOI

[37] Bianchi E., Rovelli C., Vidotto F., “Towards spinfoam cosmology”, Phys. Rev. D, 82 (2010), 084035, 8 pp. ; arXiv: 1003.3483 | DOI

[38] Bojowald M., “Absence of a singularity in loop quantum cosmology”, Phys. Rev. Lett., 86 (2001), 5227–5230 ; arXiv: gr-qc/0102069 | DOI | MR

[39] Bojowald M., “Consistent loop quantum cosmology”, Classical Quantum Gravity, 26 (2009), 075020, 10 pp. ; arXiv: 0811.4129 | DOI | MR | Zbl

[40] Bojowald M., “Homogeneous loop quantum cosmology”, Classical Quantum Gravity, 20 (2003), 2595–2615 ; arXiv: gr-qc/0303073 | DOI | MR | Zbl

[41] Bojowald M., “Inverse scale factor in isotropic quantum geometry”, Phys. Rev. D, 64 (2001), 084018, 8 pp. ; arXiv: gr-qc/0105067 | DOI | MR

[42] Bojowald M., “Isotropic loop quantum cosmology”, Classical Quantum Gravity, 19 (2002), 2717–2741 ; arXiv: gr-qc/0202077 | DOI | MR | Zbl

[43] Bojowald M., “Large scale effective theory for cosmological bounces”, Phys. Rev. D, 75 (2007), 081301, 5 pp. ; arXiv: gr-qc/0608100 | DOI | MR

[44] Bojowald M., “Loop quantum cosmology”, Living Rev. Relativ., 11 (2008), 4, 131 pp.

[45] Bojowald M., “Loop quantum cosmology and inhomogeneities”, Gen. Relativity Gravitation, 38 (2006), 1771–1795 ; arXiv: gr-qc/0609034 | DOI | MR | Zbl

[46] Bojowald M., “Loop quantum cosmology. I. Kinematics”, Classical Quantum Gravity, 17 (2000), 1489–1508 ; arXiv: gr-qc/9910103 | DOI | MR | Zbl

[47] Bojowald M., “Loop quantum cosmology. II. Volume operators”, Classical Quantum Gravity, 17 (2000), 1509–1526 ; arXiv: gr-qc/9910104 | DOI | MR | Zbl

[48] Bojowald M., “Loop quantum cosmology. III. Wheeler–DeWitt operators”, Classical Quantum Gravity, 18 (2001), 1055–1069 ; arXiv: gr-qc/0008052 | DOI | MR | Zbl

[49] Bojowald M., “Loop quantum cosmology. IV. Discrete time evolution”, Classical Quantum Gravity, 18 (2001), 1071–1087 ; arXiv: gr-qc/0008053 | DOI | MR | Zbl

[50] Bojowald M., “Loop quantum cosmology: recent progress”, Pramana, 63 (2004), 765–776 ; arXiv: gr-qc/0402053 | DOI

[51] Bojowald M., “Nonsingular black holes and degrees of freedom in quantum gravity”, Phys. Rev. Lett., 95 (2005), 061301, 4 pp. ; arXiv: gr-qc/0506128 | DOI | MR

[52] Bojowald M., “Quantization ambiguities in isotropic quantum geometry”, Classical Quantum Gravity, 19 (2002), 5113–5129 ; arXiv: gr-qc/0206053 | DOI | MR | Zbl

[53] Bojowald M., “Quantum nature of cosmological bounces”, Gen. Relativity Gravitation, 40 (2008), 2659–2683 ; arXiv: 0801.4001 | DOI | MR | Zbl

[54] Bojowald M., “Spherically symmetric quantum geometry: states and basic operators”, Classical Quantum Gravity, 21 (2004), 3733–3753 ; arXiv: gr-qc/0407017 | DOI | MR | Zbl

[55] Bojowald M., Calcagni G., “Inflationary observables in loop quantum cosmology”, J. Cosmol. Astropart. Phys., 2011:3 (2011), 032, 35 pp. ; arXiv: 1011.2779 | DOI | MR

[56] Bojowald M., Calcagni G., Tsujikawa S., “Observational constraints on loop quantum cosmology”, Phys. Rev. Lett., 107 (2011), 21130, 5 pp. ; arXiv: 1101.5391 | DOI

[57] Bojowald M., Calcagni G., Tsujikawa S., “Observational test of inflation in loop quantum cosmology”, J. Cosmol. Astropart. Phys., 2011:11 (2011), 046, 32 pp. ; arXiv: 1107.1540 | DOI

[58] Bojowald M., Cartin D., Khanna G., “Lattice refining loop quantum cosmology, anisotropic models, and stability”, Phys. Rev. D, 76 (2007), 064018, 13 pp. ; arXiv: 0704.1137 | DOI | MR

[59] Bojowald M., Date G., Vandersloot K., “Homogeneous loop quantum cosmology: the role of the spin connection”, Classical Quantum Gravity, 21 (2004), 1253–1278 ; arXiv: gr-qc/0311004 | DOI | MR | Zbl

[60] Bojowald M., Harada T., Tibrewala R., “Lemaitre–Tolman–Bondi collapse from the perspective of loop quantum gravity”, Phys. Rev. D, 78 (2008), 064057, 30 pp. ; arXiv: 0806.2593 | DOI | MR

[61] Bojowald M., Hernández H., Skirzewski A., “Effective equations for isotropic quantum cosmology including matter”, Phys. Rev. D, 76 (2007), 063511, 24 pp. ; arXiv: 0706.1057 | DOI | MR

[62] Bojowald M., Hossain G.M., “Cosmological vector modes and quantum gravity effects”, Classical Quantum Gravity, 24 (2007), 4801–4816 ; arXiv: 0709.0872 | DOI | MR | Zbl

[63] Bojowald M., Hossain G.M., “Loop quantum gravity corrections to gravitational wave dispersion”, Phys. Rev. D, 77 (2008), 023508, 14 pp. ; arXiv: 0709.2365 | DOI | MR

[64] Bojowald M., Hossain G.M., Kagan M., Shankaranarayanan S., “Anomaly freedom in perturbative loop quantum gravity”, Phys. Rev. D, 78 (2008), 063547, 31 pp. ; arXiv: 0806.3929 | DOI | MR

[65] Bojowald M., Hossain G.M., Kagan M., Shankaranarayanan S., “Gauge invariant cosmological perturbation equations with corrections from loop quantum gravity”, Phys. Rev. D, 79 (2009), 043505, 21 pp., arXiv: ; “Erratum”, Phys. Rev. D, 82 (2010), 109903 0811.1572 | DOI | MR | DOI

[66] Bojowald M., Kagan M., Hernández H.H., Skirzewski A., “Effective constraints of loop quantum gravity”, Phys. Rev. D, 75 (2007), 064022, 25 pp. ; arXiv: gr-qc/0611112 | DOI | MR

[67] Bojowald M., Lidsey J.E., Mulryne D.J., Singh P., Tavakol R., “Inflationary cosmology and quantization ambiguities in semiclassical loop quantum gravity”, Phys. Rev. D, 70 (2004), 043530, 14 pp. ; arXiv: gr-qc/0403106 | DOI | MR

[68] Bojowald M., Swiderski R., “Spherically symmetric quantum geometry: Hamiltonian constraint”, Classical Quantum Gravity, 23 (2006), 2129–2154 ; arXiv: gr-qc/0511108 | DOI | MR | Zbl

[69] Bojowald M., Swiderski R., “The volume operator in spherically symmetric quantum geometry”, Classical Quantum Gravity, 21 (2004), 4881–4900 ; arXiv: gr-qc/0407018 | DOI | MR | Zbl

[70] Bojowald M., Tavakol R., “Recollapsing quantum cosmologies and the question of entropy”, Phys. Rev. D, 78 (2008), 023515, 12 pp. ; arXiv: 0803.4484 | DOI | MR

[71] Bojowald M., Vandersloot K., “Loop quantum cosmology, boundary proposals, and inflation”, Phys. Rev. D, 67 (2003), 124023, 10 pp. ; arXiv: gr-qc/0303072 | DOI | MR

[72] Bonzom V., Laddha A., “Lessons from toy-models for the dynamics of loop quantum gravity”, SIGMA, 8 (2012), 009, 50 pp. ; arXiv: 1110.2157 | DOI

[73] Brizuela D., Mena Marugán G.A., Pawlowski T., “Big bounce and inhomogeneities”, Classical Quantum Gravity, 27 (2010), 052001, 8 pp. ; arXiv: 0902.0697 | DOI | MR | Zbl

[74] Brizuela D., Mena Marugán G.A., Pawlowski T., “Effective dynamics of the hybrid quantization of the Gowdy $T^3$ universe”, Phys. Rev. D, 84 (2011), 124017, 21 pp. ; arXiv: 1106.3793 | DOI

[75] Cailleteau T., Barrau A., Gauge invariance in loop quantum cosmology: Hamilton–Jacobi and Mukhanov–Sasaki equations for scalar perturbations, arXiv: 1111.7192

[76] Cailleteau T., Mielczarek J., Barrau A., Grain J., Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology, arXiv: 1111.3535

[77] Calcagni G., Classical and quantum cosmology, unpublished

[78] Calcagni G., Cortês M., “Inflationary scalar spectrum in loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 829–853 ; arXiv: gr-qc/0607059 | DOI | MR | Zbl

[79] Calcagni G., Gielen S., Oriti D., Group field cosmology: a cosmological field theory of quantum geometry, arXiv: 1201.4151

[80] Calcagni G., Gielen S., Oriti D., “Two-point functions in (loop) quantum cosmology”, Classical Quantum Gravity, 28 (2011), 125014, 25 pp. ; arXiv: 1011.4290 | DOI | MR | Zbl

[81] Calcagni G., Hossain G.M., “Loop quantum cosmology and tensor perturbations in the early universe”, Adv. Sci. Lett., 2 (2009), 184–193 ; arXiv: 0810.4330 | DOI

[82] Campiglia M., Gambini R., Pullin J., “Loop quantization of spherically symmetric midi-superspaces”, Classical Quantum Gravity, 24 (2007), 3649–3672 ; arXiv: gr-qc/0703135 | DOI | MR | Zbl

[83] Campiglia M., Gambini R., Pullin J., “Loop quantization of spherically symmetric midi-superspaces: the interior problem”, AIP Conf. Proc., 977 (2008), 52–63 ; arXiv: 0712.0817 | DOI | MR | Zbl

[84] Chiou D.W., “Effective dynamics, big bounces, and scaling symmetry in Bianchi type I loop quantum cosmology”, Phys. Rev. D, 76 (2007), 124037, 19 pp. ; arXiv: 0710.0416 | DOI | MR

[85] Chiou D.W., “Loop quantum cosmology in Bianchi type I models: analytical investigation”, Phys. Rev. D, 75 (2007), 024029, 33 pp. ; arXiv: gr-qc/0609029 | DOI | MR

[86] Copeland E.J., Mulryne D.J., Nunes N.J., Shaeri M., “Gravitational wave background from superinflation in loop quantum cosmology”, Phys. Rev. D, 79 (2009), 023508, 8 pp. ; arXiv: 0810.0104 | DOI | MR

[87] Copeland E.J., Mulryne D.J., Nunes N.J., Shaeri M., “Superinflation in loop quantum cosmology”, Phys. Rev. D, 77 (2008), 023510, 11 pp. ; arXiv: 0708.1261 | DOI | MR

[88] Corichi A., Cortez J., Mena Marugán G.A., “Quantum Gowdy $T^3$ model: a unitary description”, Phys. Rev. D, 73 (2006), 084020, 17 pp. ; arXiv: gr-qc/0603006 | DOI | MR

[89] Corichi A., Cortez J., Mena Marugán G.A., “Unitary evolution in Gowdy cosmology”, Phys. Rev. D, 73 (2006), 041502, 5 pp. ; arXiv: gr-qc/0510109 | DOI | MR

[90] Corichi A., Cortez J., Mena Marugán G.A., Velhinho J.M., “Quantum Gowdy $T^3$ model: a uniqueness result”, Classical Quantum Gravity, 23 (2006), 6301–6319 ; arXiv: gr-qc/0607136 | DOI | MR | Zbl

[91] Corichi A., Cortez J., Quevedo H., “On unitary time evolution in Gowdy $T^3$ cosmologies”, Internat. J. Modern Phys. D, 11 (2002), 1451–1468 ; arXiv: gr-qc/0204053 | DOI | MR | Zbl

[92] Corichi A., Singh P., “Is loop quantization in cosmology unique?”, Phys. Rev. D, 78 (2008), 024034, 13 pp. ; arXiv: 0805.0136 | DOI | MR

[93] Corichi A., Singh P., “Quantum bounce and cosmic recall”, Phys. Rev. Lett., 100 (2008), 161302, 4 pp. ; arXiv: 0710.4543 | DOI

[94] Cortez J., Mena Marugán G.A., “Feasibility of a unitary quantum dynamics in the Gowdy $T^3$ cosmological model”, Phys. Rev. D, 72 (2005), 064020, 14 pp. ; arXiv: gr-qc/0507139 | DOI

[95] Cortez J., Mena Marugán G.A., Olmedo J., Velhinho J.M., “A unique Fock quantization for fields in non-stationary spacetimes”, J. Cosmol. Astropart. Phys., 2010:10 (2010), 030, 11 pp. ; arXiv: 1004.5320 | DOI | MR

[96] Cortez J., Mena Marugán G.A., Olmedo J., Velhinho J.M., “Uniqueness of the Fock quantization of fields with unitary dynamics in nonstationary spacetimes”, Phys. Rev. D, 83 (2011), 025002, 13 pp. ; arXiv: 1101.2397 | DOI

[97] Cortez J., Mena Marugán G.A., Velhinho J.M., “Fock quantization of a scalar field with time dependent mass on the three-sphere: unitarity and uniqueness”, Phys. Rev. D, 81 (2010), 044037, 13 pp. ; arXiv: 1001.0946 | DOI

[98] Cortez J., Mena Marugán G.A., Velhinho J.M., “Uniqueness of the Fock quantization of the Gowdy $T^3$ model”, Phys. Rev. D, 75 (2007), 084027, 14 pp. ; arXiv: gr-qc/0702117 | DOI | MR

[99] DeWitt B.S., “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160 (1967), 1113–1148 | DOI | Zbl

[100] Ding Y., Ma Y., Yang J., “Effective scenario of loop quantum cosmology”, Phys. Rev. Lett., 102 (2009), 051301, 4 pp. ; arXiv: 0808.0990 | DOI | MR

[101] Dittrich B., “Partial and complete observables for canonical general relativity”, Classical Quantum Gravity, 23 (2006), 6155–6184 ; arXiv: gr-qc/0507106 | DOI | MR | Zbl

[102] Dittrich B., “Partial and complete observables for Hamiltonian constrained systems”, Gen. Relativity Gravitation, 39 (2007), 1891–1927 ; arXiv: gr-qc/0411013 | DOI | MR | Zbl

[103] Gambini R., Pullin J., “Diffeomorphism invariance in spherically symmetric loop quantum gravity”, Adv. Sci. Lett., 2 (2009), 251–254 ; arXiv: 0807.4748 | DOI

[104] Garay L.J., Martín-Benito M., Mena Marugán G.A., “Inhomogeneous loop quantum cosmology: hybrid quantization of the Gowdy model”, Phys. Rev. D, 82 (2010), 044048, 17 pp. ; arXiv: 1005.5654 | DOI

[105] Geroch R., “A method for generating solutions of Einstein's equations”, J. Math. Phys., 12 (1971), 918–924 | DOI | MR | Zbl

[106] Gielen S., Oriti D., Discrete and continuum third quantization of gravity, arXiv: 1102.2226

[107] Gowdy R.H., “Gravitational waves in closed universes”, Phys. Rev. Lett., 27 (1971), 826–829 | DOI

[108] Gowdy R.H., “Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions”, Ann. Physics, 83 (1974), 203–241 | DOI | MR | Zbl

[109] Grain J., Barrau A., “Cosmological footprints of loop quantum gravity”, Phys. Rev. Lett., 102 (2009), 081301, 4 pp., arXiv: 0902.0145 | DOI | MR

[110] Grain J., Barrau A., Cailleteau T., Mielczarek J., “Observing the big bounce with tensor modes in the cosmic microwave background: phenomenology and fundamental loop quantum cosmology parameters”, Phys. Rev. D, 82 (2010), 123520, 12 pp. ; arXiv: 1011.1811 | DOI

[111] Han M., Ma Y., Huang W., “Fundamental structure of loop quantum gravity”, Internat. J. Modern Phys. D, 16 (2007), 1397–1474 ; arXiv: gr-qc/0509064 | DOI | MR | Zbl

[112] Hartle J.B., Hawking S.W., “Wave function of the universe”, Phys. Rev. D, 28 (1983), 2960–2975 | DOI | MR

[113] Hawking S.W., “The boundary conditions of the universe”, Pont. Acad. Sci. Scr. Varia, 48 (1982), 563–572

[114] Hawking S.W., “The quantum state of the universe”, Nuclear Phys. B, 239 (1984), 257–276 | DOI | MR

[115] Hellmann F., “Expansions in spin foam cosmology”, Phys. Rev. D, 84 (2011), 103516, 9 pp. ; arXiv: 1105.1334 | DOI

[116] Henderson A., Rovelli C., Vidotto F., Wilson-Ewing E., “Local spinfoam expansion in loop quantum cosmology”, Classical Quantum Gravity, 28 (2011), 025003, 10 pp. ; arXiv: 1010.0502 | DOI | MR | Zbl

[117] Hinterleitner F., Major S., “Plane gravitational waves in real connection variables”, Phys. Rev. D, 83 (2011), 044034, 13 pp. ; arXiv: 1006.4146 | DOI

[118] Hinterleitner F., Major S., Towards loop quantization of plane gravitational waves, arXiv: 1106.1448

[119] Hossain G.M., “Primordial density perturbation in effective loop quantum cosmology”, Classical Quantum Gravity, 22 (2005), 2511–2532 ; arXiv: gr-qc/0411012 | DOI | MR | Zbl

[120] Huang H., Ma Y., Qin L., Path integral and effective Hamiltonian in loop quantum cosmology, arXiv: 1102.4755

[121] Husain V., Pullin J., “Quantum theory of space-times with one Killing field”, Modern Phys. Lett. A, 5 (1990), 733–741 | DOI | MR | Zbl

[122] Husain V., Smolin L., “Exactly solvable quantum cosmologies from two Killing field reductions of general relativity”, Nuclear Phys. B, 327 (1989), 205–238 | DOI | MR

[123] Immirzi G., “Quantum gravity and Regge calculus”, Nuclear Phys. B Proc. Suppl., 57 (1997), 65–72 ; arXiv: gr-qc/9701052 | DOI | MR | Zbl

[124] Immirzi G., “Real and complex connections for canonical gravity”, Classical Quantum Gravity, 14 (1997), L177–L181 ; arXiv: gr-qc/9612030 | DOI | MR | Zbl

[125] Isenberg J., Moncrief V., “Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes”, Ann. Physics, 199 (1990), 84–122 | DOI | MR | Zbl

[126] Kamiński W., Lewandowski J., “The flat FRW model in LQC: self-adjointness”, Classical Quantum Gravity, 25 (2008), 035001, 11 pp. ; arXiv: 0709.3120 | DOI | MR | Zbl

[127] Kamiński W., Lewandowski J., Pawlowski T., “Physical time and other conceptual issues of quantum gravity on the example of loop quantum cosmology”, Classical Quantum Gravity, 26 (2009), 035012, 20 pp. ; arXiv: 0809.2590 | DOI | MR | Zbl

[128] Kamiński W., Pawlowski T., “Cosmic recall and the scattering picture of loop quantum cosmology”, Phys. Rev. D, 81 (2010), 084027, 19 pp. ; arXiv: 1001.2663 | DOI

[129] Kamiński W., Pawlowski T., “Loop quantum cosmology evolution operator of an FRW universe with a positive cosmological constant”, Phys. Rev. D, 81 (2010), 024014, 9 pp. ; arXiv: 0912.0162 | DOI

[130] Kasner E., “Geometrical Theorems on Einstein's Cosmological Equations”, Amer. J. Math., 43 (1921), 217–221 | DOI | MR | Zbl

[131] Kato T., Perturbation theory for linear operators, Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin, 1980 | Zbl

[132] Kuchař K., “Canonical quantization of cylindrical gravitational waves”, Phys. Rev. D, 4 (1971), 955–986 | DOI | Zbl

[133] Lidsey J.E., Mulryne D.J., Nunes N.J., Tavakol R., “Oscillatory universes in loop quantum cosmology and initial conditions for inflation”, Phys. Rev. D, 70 (2004), 063521, 6 pp. ; arXiv: gr-qc/0406042 | DOI

[134] Livine E.R., Martín-Benito M., Classical setting and effective dynamics for spinfoam cosmology, arXiv: 1111.2867

[135] Manojlović N., Mena Marugán G.A., “Nonperturbative canonical quantization of minisuperspace models: Bianchi types ${\rm I}$ and ${\rm II}$”, Phys. Rev. D, 48 (1993), 3704–3719 ; arXiv: gr-qc/9304041 | DOI | MR

[136] Manojlović N., Miković A., “Canonical analysis of the Bianchi models in the Ashtekar formulation”, Classical Quantum Gravity, 10 (1993), 559–573 | DOI | MR

[137] Marolf D., “Almost ideal clocks in quantum cosmology: a brief derivation of time”, Classical Quantum Gravity, 12 (1995), 2469–2486 ; arXiv: gr-qc/9412016 | DOI | MR | Zbl

[138] Marolf D., “Observables and a Hilbert space for Bianchi {IX}”, Classical Quantum Gravity, 12 (1995), 1441–1454 ; arXiv: gr-qc/9409049 | DOI | MR | Zbl

[139] Marolf D., “Quantum observables and recollapsing dynamics”, Classical Quantum Gravity, 12 (1995), 1199–1220 ; arXiv: gr-qc/9404053 | DOI | MR | Zbl

[140] Marolf D., “Refined algebraic quantization: systems with a single constraint”, Symplectic Singularities and Geometry of Gauge Fields (Warsaw, 1995), Banach Center Publ., 39, Polish Acad. Sci. Inst. Math., Warsaw, 1997, 331–344 ; arXiv: gr-qc/9508015 | MR | Zbl

[141] Martín-Benito M., Garay L.J., Mena Marugán G.A., “Hybrid quantum Gowdy cosmology: combining loop and Fock quantizations”, Phys. Rev. D, 78 (2008), 083516, 5 pp. ; arXiv: 0804.1098 | DOI | MR

[142] Martín-Benito M., Martín-de Blas D., Mena Marugán G.A., “From the hybrid Gowdy model towards inhomogeneous Friedmann–Robertson–Walker quantum cosmologies” (to appear)

[143] Martín-Benito M., Martín-de Blas D., Mena Marugán G.A., “Matter in inhomogeneous loop quantum cosmology: the Gowdy $T^3$ model”, Phys. Rev. D, 83 (2011), 084050, 7 pp. ; arXiv: 1012.2324 | DOI

[144] Martín-Benito M., Mena Marugán G.A., Olmedo J.,, “Further improvements in the understanding of isotropic loop quantum cosmology”, Phys. Rev. D, 80 (2009), 104015, 11 pp. ; arXiv: 0909.2829 | DOI

[145] Martín-Benito M., Mena Marugán G.A., Pawlowski T., “Loop quantization of vacuum Bianchi I cosmology”, Phys. Rev. D, 78 (2008), 064008, 11 pp. ; arXiv: 0804.3157 | DOI | MR

[146] Martín-Benito M., Mena Marugán G.A., Pawlowski T., “Physical evolution in loop quantum cosmology: the example of the vacuum Bianchi I model”, Phys. Rev. D, 80 (2009), 084038, 23 pp. ; arXiv: 0906.3751 | DOI | MR

[147] Martín-Benito M., Mena Marugán G.A., Wilson-Ewing E., “Hybrid quantization: from Bianchi I to the Gowdy model”, Phys. Rev. D, 82 (2010), 084012, 11 pp. ; arXiv: 1006.2369 | DOI

[148] Meissner K.A., “Black-hole entropy in loop quantum gravity”, Classical Quantum Gravity, 21 (2004), 5245–5251 ; arXiv: gr-qc/0407052 | DOI | MR | Zbl

[149] Mena Marugán G.A., “A brief introduction to loop quantum cosmology”, AIP Conf. Proc., 1130 (2009), 89–100 ; arXiv: 0907.5160 | DOI | Zbl

[150] Mena Marugán G.A., “Canonical quantization of the Gowdy model”, Phys. Rev. D, 56 (1997), 908–919 ; arXiv: gr-qc/9704041 | DOI | MR

[151] Mena Marugán G.A., Martín-Benito M., “Hybrid quantum cosmology: combining loop and Fock quantizations”, Internat. J. Modern Phys. A, 24 (2009), 2820–2838 ; arXiv: 0907.3797 | DOI | MR | Zbl | MR

[152] Mena Marugán G.A., Montejo M., “Quantization of pure gravitational plane waves”, Phys. Rev. D, 58 (1998), 104017, 11 pp. ; arXiv: gr-qc/9806105 | DOI | MR

[153] Mena Marugán G.A., Olmedo J., “Inhomogeneities and inflation in loop quantum cosmology: a hybrid approach” (to appear)

[154] Mena Marugán G.A., Olmedo J., Pawlowski T., “Prescriptions in loop quantum cosmology: a comparative analysis”, Phys. Rev. D, 840 (2011), 064012, 18 pp. ; arXiv: 1108.0829 | DOI

[155] Mielczarek J., “Gravitational waves from the big bounce”, J. Cosmol. Astropart. Phys., 2008:11 (2008), 011, 17 pp. ; arXiv: 0807.0712 | DOI | MR

[156] Mielczarek J., Cailleteau T., Barrau A., Grain J., Anomaly-free vector perturbations with holonomy corrections in loop quantum cosmology, arXiv: 1106.3744

[157] Mielczarek J., Cailleteau T., Grain J., Barrau A., “Inflation in loop quantum cosmology: dynamics and spectrum of gravitational waves”, Phys. Rev. D, 81 (2010), 104049, 11 pp. ; arXiv: 1003.4660 | DOI

[158] Mielczarek J., Hrycyna O., Szydlowski M., “Effective dynamics of the closed loop quantum cosmology”, J. Cosmol. Astropart. Phys., 2009:11 (2009), 014, 16 pp. ; arXiv: 0906.2503 | DOI | MR

[159] Misner C.W., “A minisuperspace example: the Gowdy $T^3$ cosmology”, Phys. Rev. D, 8 (1973), 3271–3285 | DOI

[160] Misner C.W., Thorne K.S., Wheeler J.A., Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973 | MR

[161] Moncrief V., “Global properties of Gowdy spacetimes with $T^3\timesR$ topology”, Ann. Physics, 132 (1981), 87–107 | DOI | MR

[162] Moncrief V., “Infinite-dimensional family of vacuum cosmological models with Taub-NUT (Newman-Unti-Tamburino)-type extensions”, Phys. Rev. D, 23 (1981), 312–315 | DOI | MR

[163] Nelson W., Sakellariadou M., “Lattice refining loop quantum cosmology and the matter Hamiltonian”, Phys. Rev. D, 76 (2007), 104003, 9 pp. ; arXiv: 0707.0588 | DOI

[164] Pierri M., “Probing quantum general relativity through exactly soluble midi-superspaces. {II}. Polarized Gowdy models”, Internat. J. Modern Phys. D, 11 (2002), 135–153 ; arXiv: gr-qc/0101013 | DOI | MR | Zbl

[165] Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, 2nd ed., Academic Press Inc., New York, 1980 | MR

[166] Rendall A.D., “Adjointness relations as a criterion for choosing an inner product”, Canonical Gravity: from Classical to Quantum (Bad Honnef, 1993), Lecture Notes in Phys., 434, Springer, Berlin, 1994, 319–326 ; arXiv: gr-qc/9403001 | DOI | MR

[167] Rendall A.D., “Unique determination of an inner product by adjointness relations in the algebra of quantum observables”, Classical Quantum Gravity, 10 (1993), 2261–2269 ; arXiv: gr-qc/9303026 | DOI | MR | Zbl

[168] Röken C., First-order quantum-gravitational correction from covariant, holomorphic spinfoam cosmology, arXiv: 1011.3335

[169] Rovelli C., “Partial observables”, Phys. Rev. D, 65 (2002), 124013, 8 pp. ; arXiv: gr-qc/0110035 | DOI | MR

[170] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[171] Rovelli C., Smolin L., “Discreteness of area and volume in quantum gravity”, Nuclear Phys. B, 442 (1995), 593–619 ; “Erratum”, Nuclear Phys. B, 456 (1995), 753–754 ; arXiv: gr-qc/9411005 | DOI | MR | Zbl | DOI | MR

[172] Rovelli C., Smolin L., “Knot theory and quantum gravity”, Phys. Rev. Lett., 61 (1988), 1155–1158 | DOI | MR

[173] Rovelli C., Smolin L., “Loop space representation of quantum general relativity”, Nuclear Phys. B, 331 (1990), 80–152 | DOI | MR

[174] Rovelli C., Smolin L., “The physical {H}amiltonian in nonperturbative quantum gravity”, Phys. Rev. Lett., 72 (1994), 446–449 ; arXiv: gr-qc/9308002 | DOI | MR | Zbl

[175] Shimano M., Harada T., “Observational constraints of a power spectrum from superinflation in loop quantum cosmology”, Phys. Rev. D, 80 (2009), 063538, 11 pp. ; arXiv: 0909.0334 | DOI

[176] Singh P., “Loop cosmological dynamics and dualities with Randall–Sundrum braneworlds”, Phys. Rev. D, 73 (2006), 063508, 9 pp. ; arXiv: gr-qc/0603043 | DOI | MR

[177] Singh P., Toporensky A., “Big crunch avoidance in $k=1$ semiclassical loop quantum cosmology”, Phys. Rev. D, 69 (2004), 104008, 5 pp. ; arXiv: gr-qc/0312110 | DOI

[178] Singh P., Vandersloot K., Vereshchagin G.V., “Nonsingular bouncing universes in loop quantum cosmology”, Phys. Rev. D, 74 (2006), 043510, 12 pp. ; arXiv: gr-qc/0606032 | DOI

[179] Singh P., Vidotto F., “Exotic singularities and spatially curved loop quantum cosmology”, Phys. Rev. D, 83 (2011), 064027, 13 pp. ; arXiv: 1012.1307 | DOI

[180] Stone M.H., “Linear transformations in Hilbert space. III. Operational methods and group theory”, Proc. Natl. Acad. Sci. USA, 16 (1930), 172–175 | DOI | Zbl

[181] Szulc L., “An open FRW model in loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 6191–6200 ; arXiv: 0707.1816 | DOI | MR | Zbl

[182] Szulc L., “Loop quantum cosmology of diagonal Bianchi type I model: simplifications and scaling problems”, Phys. Rev. D, 78 (2008), 064035, 12 pp. ; arXiv: 0803.3559 | DOI | MR

[183] Szulc L., Kamiński W., Lewandowski J., “Closed Friedmann–Robertson–Walker model in loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 2621–2635 ; arXiv: gr-qc/0612101 | DOI | MR | Zbl

[184] Taveras V., “Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar field”, Phys. Rev. D, 78 (2008), 064072, 9 pp. ; arXiv: 0807.3325 | DOI | MR | Zbl

[185] Thiemann T., “Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity”, Phys. Lett. B, 380 (1996), 257–264 ; arXiv: gr-qc/9606088 | DOI | MR | Zbl

[186] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[187] Thiemann T., “Quantum spin dynamics (QSD)”, Classical Quantum Gravity, 15 (1998), 839–873 ; arXiv: gr-qc/9606089 | DOI | MR | Zbl

[188] Thiemann T., “Quantum spin dynamics (QSD). V. Quantum gravity as the natural regulator of the Hamiltonian constraint of matter quantum field theories”, Classical Quantum Gravity, 15 (1998), 1281–1314 ; arXiv: gr-qc/9705019 | DOI | MR | Zbl

[189] Torre C.G., “Quantum dynamics of the polarized Gowdy $T^3$ model”, Phys. Rev. D, 66 (2002), 084017, 12 pp. ; arXiv: gr-qc/0206083 | DOI | MR

[190] Tsujikawa S., Singh P., Maartens R., “Loop quantum gravity effects on inflation and the CMB”, Classical Quantum Gravity, 21 (2004), 5767–5775 ; arXiv: astro-ph/0311015 | DOI | MR | Zbl

[191] Vandersloot K., “Loop quantum cosmology and the $k=-1$ Robertson–Walker model”, Phys. Rev. D, 75 (2007), 023523, 13 pp. ; arXiv: gr-qc/0612070 | DOI | MR | Zbl

[192] Velhinho J.M., “The quantum configuration space of loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 3745–3758 ; arXiv: 0704.2397 | DOI | MR | Zbl

[193] Vidotto F., “Many-node/many-link spinfoam: the homogeneous and isotropic case”, Classical Quantum Gravity, 28 (2011), 245005, 11 pp. ; arXiv: 1107.2633 | DOI | MR | Zbl

[194] Vidotto F., “Spinfoam cosmology”, J. Phys. Conf. Ser., 314 (2011), 012049, 4 pp. ; arXiv: 1011.4705 | DOI

[195] von Neumann J., “Die Eindeutigkeit der Schrödingerschen Operatoren”, Math. Ann., 104 (1931), 570–578 | DOI | MR | Zbl

[196] Wald R.M., General relativity, University of Chicago Press, Chicago, IL, 1984 | MR | Zbl

[197] Wald R.M., Quantum field theory in curved spacetime and black hole thermodynamics, Chicago Lectures in Physics, University of Chicago Press, Chicago, IL, 1994 | MR

[198] Wands D., Malik K.A., Lyth D.H., Liddle A.R., “New approach to the evolution of cosmological perturbations on large scales”, Phys. Rev. D, 62 (2000), 043527, 8 pp. ; arXiv: astro-ph/0003278 | DOI | MR

[199] Wheeler J.A., “Superspace and the nature of quantum geometrodynamics”, Batelle Rencontres, eds. C.M. DeWitt, J.A. Wheeler, W.A. Benjamin, New York, 1968, 242–307

[200] Wilson-Ewing E., Holonomy corrections in the effective equations for scalar mode perturbations in loop quantum cosmology, arXiv: 1108.6265

[201] Wilson-Ewing E., “Loop quantum cosmology of Bianchi type IX models”, Phys. Rev. D, 82 (2010), 043508, 13 pp. ; arXiv: 1005.5565 | DOI

[202] Yang J., Ding Y., Ma Y., Alternative quantization of the Hamiltonian in isotropic loop quantum cosmology, arXiv: 0902.1913

[203] Yang J., Ding Y., Ma Y., “Alternative quantization of the Hamiltonian in loop quantum cosmology”, Phys. Lett. B, 682 (2009), 1–7 ; arXiv: 0904.4379 | DOI | MR