Mots-clés : unification
@article{SIGMA_2012_8_a13,
author = {Sundance Bilson-Thompson and Jonathan Hackett and Louis Kauffman and Yidun Wan},
title = {Emergent braided matter of quantum geometry},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a13/}
}
TY - JOUR AU - Sundance Bilson-Thompson AU - Jonathan Hackett AU - Louis Kauffman AU - Yidun Wan TI - Emergent braided matter of quantum geometry JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a13/ LA - en ID - SIGMA_2012_8_a13 ER -
%0 Journal Article %A Sundance Bilson-Thompson %A Jonathan Hackett %A Louis Kauffman %A Yidun Wan %T Emergent braided matter of quantum geometry %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a13/ %G en %F SIGMA_2012_8_a13
Sundance Bilson-Thompson; Jonathan Hackett; Louis Kauffman; Yidun Wan. Emergent braided matter of quantum geometry. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a13/
[1] Alesci E., Bianchi E., Rovelli C., “LQG propagator. {III}. The new vertex”, Classical Quantum Gravity, 26 (2009), 215001, 8 pp. ; arXiv: 0812.5018 | DOI | MR
[2] Alesci E., Rovelli C., “Complete LQG propagator: difficulties with the Barrett–Crane vertex”, Phys. Rev. D, 76 (2007), 104012, 22 pp. ; arXiv: 0708.0883 | DOI
[3] Alesci E., Rovelli C., “Complete LQG propagator. II. Asymptotic behavior of the vertex”, Phys. Rev. D, 77 (2008), 044024, 11 pp. ; arXiv: 0711.1284 | DOI
[4] Ashtekar A., Lectures on nonperturbative canonical gravity, Advanced Series in Astrophysics and Cosmology, 6, World Scientific Publishing Co. Inc., River Edge, NJ, 1991 | MR | Zbl
[5] Ashtekar A., Bombelli L., Corichi A., “Semiclassical states for constrained systems”, Phys. Rev. D, 72 (2005), 025008, 16 pp. ; arXiv: gr-qc/0504052 | DOI | MR
[6] Baez J., Muniain J.P., Gauge fields, knots and gravity, Series on Knots and Everything, 4, World Scientific Publishing Co. Inc., River Edge, NJ, 1994 | MR | Zbl
[7] Baez J.C., “An introduction to spin foam models of BF theory and quantum gravity”, Geometry and Quantum Physics (Schladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93 ; arXiv: gr-qc/9905087 | DOI | MR
[8] Baez J.C., “Spin foam models”, Classical Quantum Gravity, 15 (1998), 1827–1858 ; arXiv: gr-qc/9709052 | DOI | MR | Zbl
[9] Bahr B., Thiemann T., “Gauge-invariant coherent states for loop quantum gravity. I. {A}belian gauge groups”, Classical Quantum Gravity, 26 (2009), 045011, 22 pp. ; arXiv: 0709.4619 | DOI | MR | Zbl
[10] Barrett J.W., Crane L., “Relativistic spin networks and quantum gravity”, J. Math. Phys., 39 (1998), 3296–3302 ; arXiv: gr-qc/9709028 | DOI | MR | Zbl
[11] Bianchi E., Dona' P., Speziale S., “Polyhedra in loop quantum gravity”, Phys. Rev. D, 83 (2011), 044035, 17 pp. ; arXiv: 1009.3402 | DOI
[12] Bilson-Thompson S., A topological model of composite preons, arXiv: hep-ph/0503213
[13] Bilson-Thompson S., Hackett J., Kauffman L., Particle identifications from symmetries of braided ribbon network invariants, arXiv: 0804.0037
[14] Bilson-Thompson S., Hackett J., Kauffman L.H., “Particle topology, braids, and braided belts”, J. Math. Phys., 50 (2009), 113505, 16 pp. ; arXiv: 0903.1376 | DOI | MR | Zbl
[15] Bilson-Thompson S.O., Markopoulou F., Smolin L., “Quantum gravity and the standard model”, Classical Quantum Gravity, 24 (2007), 3975–3993 ; arXiv: hep-th/0603022 | DOI | MR | Zbl
[16] Borissov R., Major S., Smolin L., “The geometry of quantum spin networks”, Classical Quantum Gravity, 13 (1996), 3183–3195 ; arXiv: gr-qc/9512043 | DOI | MR | Zbl
[17] Boulatov D.V., “A model of three-dimensional lattice gravity”, Modern Phys. Lett. A, 7 (1992), 1629–1646 ; arXiv: hep-th/9202074 | DOI | MR | Zbl
[18] Brill D.R., Hartle J.B., “Method of the self-consistent field in general relativity and its application to the gravitational geon”, Phys. Rev., 135 (1964), B271–B278 | DOI | MR
[19] Cherrington J.W., Recent developments in dual lattice algorithms, arXiv: 0810.0546
[20] Cherrington J.W., Christensen J.D., “A dual non-Abelian Yang–Mills amplitude in four dimensions”, Nuclear Phys. B, 813 (2009), 370–382 ; arXiv: 0808.3624 | DOI | MR | Zbl
[21] Christensen J.D., Livine E.R., Speziale S., “Numerical evidence of regularized correlations in spin foam gravity”, Phys. Lett. B, 670 (2009), 403–406 ; arXiv: 0710.0617 | DOI | MR | Zbl
[22] Crane L., “$2$-d physics and $3$-d topology”, Comm. Math. Phys., 135 (1991), 615–640 | DOI | MR | Zbl
[23] Crane L., Frenkel I.B., “Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases”, J. Math. Phys., 35 (1994), 5136–5154 ; arXiv: hep-th/9405183 | DOI | MR | Zbl
[24] De Pietri R., Petronio C., “Feynman diagrams of generalized matrix models and the associated manifolds in dimension four”, J. Math. Phys., 41 (2000), 6671–6688 ; arXiv: gr-qc/0004045 | DOI | MR | Zbl
[25] De Pietri R., Rovelli C., “Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity”, Phys. Rev. D, 54 (1996), 2664–2690 ; arXiv: gr-qc/9602023 | DOI | MR
[26] Dittrich B., Thiemann T., “Are the spectra of geometrical operators in loop quantum gravity really discrete?”, J. Math. Phys., 50 (2009), 012503, 11 pp. ; arXiv: 0708.1721 | DOI | MR | Zbl
[27] Dowker H.F., Sorkin R.D., “A spin-statistics theorem for certain topological geons”, Classical Quantum Gravity, 15 (1998), 1153–1167 ; arXiv: gr-qc/9609064 | DOI | MR | Zbl
[28] Dreyer O., Markopoulou F., Smolin L., “Symmetry and entropy of black hole horizons”, Nuclear Phys. B, 744 (2006), 1–13 ; arXiv: hep-th/0409056 | DOI | MR | Zbl
[29] Ehrenfest P., “In what way does it become manifest in the fundamental laws of physics that space has three dimensions?”, Proc. Royal Netherlands Acad. Arts Sci., 20 (1917), 200–209
[30] Finkelstein D., Misner C.W., “Some new conservation laws”, Ann. Physics, 6 (1959), 230–243 | DOI | MR | Zbl
[31] Foxon T.J., “Spin networks, Turaev–{V}iro theory and the loop representation”, Classical Quantum Gravity, 12 (1995), 951–964 ; arXiv: gr-qc/9408013 | DOI | MR | Zbl
[32] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783 ; arXiv: hep-th/0505016 | DOI | MR | Zbl
[33] Freidel L., Krasnov K., “A new spin foam model for 4D gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp. ; arXiv: 0708.1595 | DOI | MR | Zbl
[34] Furmanski W., Kolawa A., “Yang–Mills vacuum: an attempt at lattice loop calculus”, Nuclear Phys. B, 291 (1987), 594–628 | DOI | MR
[35] Gu Z.C., Levin M., Swingle B., Wen X.G., “Tensor-product representations for string-net condensed states”, Phys. Rev. B, 79 (2009), 085118, 10 pp. ; arXiv: 0809.2821 | DOI
[36] Gu Z.C., Levin M., Wen X.G., “Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions”, Phys. Rev. B, 78 (2008), 205116, 11 pp. ; arXiv: 0807.2010 | DOI
[37] Gu Z.C., Wen X.G., A lattice bosonic model as a quantum theory of gravity, arXiv: gr-qc/0606100
[38] Hackett J., Invariants of braided ribbon networks, arXiv: 1106.5096
[39] Hackett J., Invariants of spin networks from braided ribbon, arXiv: 1106.5095
[40] Hackett J., “Locality and translations in braided ribbon networks”, Classical Quantum Gravity, 24 (2007), 5757–5766 ; arXiv: hep-th/0702198 | DOI | MR | Zbl
[41] Hackett J., Wan Y., “Conserved quantities for interacting 4-valent braids in quantum gravity”, Classical Quantum Gravity, 26 (2009), 125008, 14 pp. ; arXiv: 0803.3203 | DOI | MR | Zbl
[42] Hackett J., Wan Y., “Infinite degeneracy of states in quantum gravity”, J. Phys. Conf. Ser., 306 (2011), 012053, 7 pp. ; arXiv: 0811.2161 | DOI
[43] Hamma A., Markopoulou F., Premont-Schwarz I., Severini S., “Lieb–Robinson bounds and the speed of light from topological order”, Phys. Rev. Lett., 102 (2009), 017204, 4 pp. ; arXiv: 0808.2495 | DOI
[44] Harari H., “A schematic model of quarks and leptons”, Phys. Lett. B, 88 (1979), 83–86 | DOI
[45] He S., Wan Y., “C, P, and T of braid excitations in quantum gravity”, Nuclear Phys. B, 805 (2008), 1–23 ; arXiv: 0805.1265 | DOI | MR | Zbl
[46] He S., Wan Y., “Conserved quantities and the algebra of braid excitations in quantum gravity”, Nuclear Phys. B, 804 (2008), 286–306 ; arXiv: 0805.0453 | DOI | MR | Zbl
[47] Holbrook J.A., Kribs D.W., Laflamme R., “Noiseless subsystems and the structure of the commutant in quantum error correction”, Quantum Inf. Process., 2 (2003), 381–419 ; arXiv: quant-ph/0402056 | DOI | MR | Zbl
[48] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[49] Kauffman L.H., “Map coloring, $q$-deformed spin networks, and Turaev–Viro invariants for $3$-manifolds”, Internat. J. Modern Phys. B, 6 (1992), 1765–1794 | DOI | MR | Zbl
[50] Kauffman L.H., Lomonaco Jr. S.J., “$q$-deformed spin networks, knot polynomials and anyonic topological quantum computation”, J. Knot Theory Ramifications, 16 (2007), 267–332 ; arXiv: quant-ph/0606114 | DOI | MR | Zbl
[51] Kempe J., Bacon D., Lidar D.A., Whaley K.B., “Theory of decoherence-free fault-tolerant universal quantum computation”, Phys. Rev. A, 63 (2001), 042307, 29 pp. ; arXiv: quant-ph/0004064 | DOI
[52] Kogut J., Susskind L., “Hamiltonian formulation of Wilson's lattice gauge theories”, Phys. Rev. D, 11 (1975), 395–408 | DOI
[53] Konopka T., Markopoulou F., Severini S., “Quantum graphity: a model of emergent locality”, Phys. Rev. D, 77 (2008), 104029, 15 pp. ; arXiv: 0801.0861 | DOI | MR
[54] Konopka T., Markopoulou F., Smolin L., Quantum graphity, arXiv: hep-th/0611197
[55] Kribs D., Laflamme R., Poulin D., “Unified and generalized approach to quantum error correction”, Phys. Rev. Lett., 94 (2005), 180501, 4 pp. ; arXiv: quant-ph/0412076 | DOI
[56] Kribs D.W., Markopoulou F., Geometry from quantum particles, arXiv: gr-qc/0510052
[57] Kuratowski K., “Sur le problème des courbes gauches en topologie”, Fund. Math., 15 (1930), 271–283 | Zbl
[58] Levin M., Wen X.G., “Photons and electrons as emergent phenomena”, Rev. Modern Phys., 77 (2005), 871–879 ; arXiv: cond-mat/0407140 | DOI
[59] Levin M., Wen X.G., “String-net condensation: a physical mechanism for topological phases”, Phys. Rev. B, 71 (2005), 045110, 21 pp. ; arXiv: cond-mat/0404617 | DOI
[60] Lieb E.H., Robinson D.W., “The finite group velocity of quantum spin systems”, Comm. Math. Phys., 28 (1972), 251–257 | DOI | MR
[61] Loll R., “Volume operator in discretized quantum gravity”, Phys. Rev. Lett., 75 (1995), 3048–3051 ; arXiv: gr-qc/9506014 | DOI | MR | Zbl
[62] Major S., Q-quantum gravity, Ph.D. thesis, The Pennsylvania State University, 1997
[63] Major S., Smolin L., “Quantum deformation of quantum gravity”, Nuclear Phys. B, 473 (1996), 267–290 ; arXiv: gr-qc/9512020 | DOI | MR | Zbl
[64] Markopoulou F., “Conserved quantities in background independent theories”, J. Phys. Conf. Ser., 67 (2007), 012019, 11 pp. ; arXiv: gr-qc/0703027 | DOI
[65] Markopoulou F., Dual formulation of spin network evolution, arXiv: gr-qc/9704013
[66] Markopoulou F., Poulin D., Noiseless subsystems and the low energy limit of spin foam models, unpublished
[67] Markopoulou F., Prémont-Schwarz I., “Conserved topological defects in non-embedded graphs in quantum gravity”, Classical Quantum Gravity, 25 (2008), 205015, 29 pp. ; arXiv: 0805.3175 | DOI | MR | Zbl
[68] Markopoulou F., Smolin L., “Quantum theory from quantum gravity”, Phys. Rev. D, 70 (2004), 124029, 10 pp. ; arXiv: gr-qc/0311059 | DOI | MR
[69] Moussouris J.P., Quantum models as spacetime based on recoupling theory, Ph.D. thesis, Oxford University, 1983
[70] Ooguri H., “Topological lattice models in four dimensions”, Modern Phys. Lett. A, 7 (1992), 2799–2810 ; arXiv: hep-th/9205090 | DOI | MR | Zbl
[71] Oriti D., “Quantum gravity as a quantum field theory of simplicial geometry”, Quantum Gravity, Birkhäuser, Basel, 2007, 101–126 ; arXiv: gr-qc/0512103 | DOI | MR | Zbl
[72] Oriti D., Spin foam models of quantum spacetime, Ph.D. thesis, University of Cambridge, 2003; arXiv: gr-qc/0311066
[73] Oriti D., “The group field theory approach to quantum gravity”, Approaches to Quantum Gravity – toward a New Understanding of Space, Time, and Matter, Cambridge University Press, Cambridge, 2009, 310–331 ; arXiv: gr-qc/0607032 | DOI
[74] Pachner U., “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Univ. Hamburg, 57 (1987), 69–86 | DOI | MR | Zbl
[75] Penrose R., Angular monentum: an approach to combinatorial spacetime, Cambridge University Press, Cambridge, 1971 | MR
[76] Penrose R., On the nature of quantum geometry, Freeman, San Francisco, 1972
[77] Perinia C., Rovellia C., Speziale S., “Self-energy and vertex radiative corrections in LQG”, Phys. Lett. B, 682 (2009), 78–84 ; arXiv: 0810.1714 | DOI
[78] Perry G.P., Cooperstock F.I., “Stability of gravitational and electromagnetic geons”, Classical Quantum Gravity, 16 (1999), 1889–1916 ; arXiv: gr-qc/9810045 | DOI | MR | Zbl
[79] Reidemeister K., Knot theory, Chelsea, New York, 1948
[80] Rovelli C., Comment on “Are the spectra of geometrical operators in Loop Quantum Gravity really discrete?” by B. Dittrich and T. Thiemann, arXiv: 0708.2481
[81] Rovelli C., “Loop quantum gravity”, Living Rev. Relativ., 1 (1998), 1, 68 pp. ; arXiv: gr-qc/9710008 | MR | Zbl
[82] Rovelli C., “Loop quantum gravity”, Living Rev. Relativ., 11 (2008), 5, 69 pp. | MR
[83] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[84] Rovelli C., Smolin L., “Discreteness of area and volume in quantum gravity”, Nuclear Phys. B, 442 (1995), 593–619 ; arXiv: gr-qc/9411005 | DOI | MR | Zbl
[85] Rovelli C., Smolin L., “Spin networks and quantum gravity”, Phys. Rev. D, 52 (1995), 5743–5759 ; arXiv: gr-qc/9505006 | DOI | MR
[86] Rowell E.C., “Two paradigms for topological quantum computation”, Advances in Quantum Computation, Contemp. Math., 482, Amer. Math. Soc., Providence, RI, 2009, 165–177 ; arXiv: 0803.1258 | DOI | MR | Zbl
[87] Sahlmann H., Thiemann T., “Towards the QFT on curved spacetime limit of QGR. I. A general scheme”, Classical Quantum Gravity, 23 (2006), 867–908 ; arXiv: gr-qc/0207030 | DOI | MR | Zbl
[88] Shupe M.A., “A composite model of leptons and quarks”, Phys. Lett. B, 86 (1979), 87–92 | DOI
[89] Smolin L., “An invitation to loop quantum gravity”, Quantum Theory and Symmetries, World Scientific Publishing Co., Singapore, 2004, 655–682 ; arXiv: hep-th/0408048 | DOI
[90] Smolin L., “Generic predictions of quantum theories of gravity”, Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, Cambridge University Press, Cambridge, 2009, 548–570 ; arXiv: hep-th/0605052 | DOI | Zbl
[91] Smolin L., Quantum gravity with a positive cosmological constant, arXiv: hep-th/0209079
[92] Smolin L., “The case for background independence”, The Structural Foundations of Quantum Gravity, Oxford Univ. Press, Oxford, 2006, 196–239 ; arXiv: hep-th/0507235 | DOI | MR | Zbl
[93] Smolin L., Wan Y., “Propagation and interaction of chiral states in quantum gravity”, Nuclear Phys. B, 796 (2008), 331–359 ; arXiv: 0710.1548 | DOI | MR | Zbl
[94] Thiemann T., “Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity”, Phys. Lett. B, 380 (1996), 257–264 ; arXiv: gr-qc/9606088 | DOI | MR | Zbl
[95] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[96] Thiemann T., “Quantum spin dynamics (QSD)”, Classical Quantum Gravity, 15 (1998), 839–873 ; arXiv: gr-qc/9606089 | DOI | MR | Zbl
[97] Thiemann T., “Quantum spin dynamics (QSD). II. The kernel of the Wheeler–DeWitt constraint operator”, Classical Quantum Gravity, 15 (1998), 875–905 ; arXiv: gr-qc/9606090 | DOI | MR | Zbl
[98] Thompson (Lord Kelvin) W., “Hydrodynamies”, Proc. Roy. Soc., 41 (1867), 94–105
[99] Turaev V.G., Viro O.Y., “State sum invariants of $3$-manifolds and quantum $6j$-symbols”, Topology, 31 (1992), 865–902 | DOI | MR | Zbl
[100] Wan Y., 2D Ising model with non-local links – a study of non-locality, arXiv: hep-th/0512210
[101] Wan Y., “Effective theory of braid excitations of quantum geometry in terms of Feynman diagrams”, Nuclear Phys. B, 814 (2009), 1–20 ; arXiv: 0809.4464 | DOI | MR | Zbl
[102] Wan Y., Emergent matter of quantum geometry, Ph.D. thesis, University of Waterloo, 2009
[103] Wan Y., On braid excitations in quantum gravity, arXiv: 0710.1312
[104] Wang Z., “Topologization of electron liquids with Chern–Simons theory and quantum computation”, Differential Geometry and Physics, Nankai Tracts Math., 10, World Sci. Publ., Hackensack, NJ, 2006, 106–120 ; arXiv: cond-mat/0601285 | DOI | MR | Zbl
[105] Wheeler J.A., “Geons”, Phys. Rev., 97 (1955), 511–536 | DOI | MR | Zbl
[106] Zanardi P., Rasetti M., “Noiseless quantum codes”, Phys. Rev. Lett., 79 (1997), 3306–3309 ; arXiv: quant-ph/9705044 | DOI