Exponential formulas and Lie algebra type star products
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given formal differential operators $F_i$ on polynomial algebra in several variables $x_1,\dots,x_n$, we discuss finding expressions $K_l$ determined by the equation $\exp(\sum_i x_i F_i)(\exp(\sum_j q_j x_j)) = \exp(\sum_l K_l x_l)$ and their applications. The expressions for $K_l$ are related to the coproducts for deformed momenta for the noncommutative space-times of Lie algebra type and also appear in the computations with a class of star products. We find combinatorial recursions and derive formal differential equations for finding $K_l$. We elaborate an example for a Lie algebra $su(2)$, related to a quantum gravity application from the literature.
Keywords: star product, exponential expression, formal differential operator.
@article{SIGMA_2012_8_a12,
     author = {Stjepan Meljanac and Zoran \v{S}koda and Dragutin Svrtan},
     title = {Exponential formulas and {Lie} algebra type star products},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a12/}
}
TY  - JOUR
AU  - Stjepan Meljanac
AU  - Zoran Škoda
AU  - Dragutin Svrtan
TI  - Exponential formulas and Lie algebra type star products
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a12/
LA  - en
ID  - SIGMA_2012_8_a12
ER  - 
%0 Journal Article
%A Stjepan Meljanac
%A Zoran Škoda
%A Dragutin Svrtan
%T Exponential formulas and Lie algebra type star products
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a12/
%G en
%F SIGMA_2012_8_a12
Stjepan Meljanac; Zoran Škoda; Dragutin Svrtan. Exponential formulas and Lie algebra type star products. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a12/

[1] Amelino-Camelia G., Arzano M., “Coproduct and star product in field theories on Lie-algebra noncommutative space-times”, Phys. Rev. D, 65 (2002), 084044, 8 pp. ; arXiv: hep-th/0105120 | DOI | MR

[2] Arnal D., Cortet J.C., “$\ast$-products in the method of orbits for nilpotent groups”, J. Geom. Phys., 2 (1985), 83–116 | DOI | MR | Zbl

[3] Arnal D., Cortet J.C., Molin P., Pinczon G., “Covariance and geometrical invariance in $\ast$ quantization”, J. Math. Phys., 24 (1983), 276–283 | DOI | MR | Zbl

[4] Aschieri P., Lizzi F., Vitale P., “Twisting all the way: from classical mechanics to quantum fields”, Phys. Rev. D, 77 (2008), 025037, 16 pp. ; arXiv: 0708.3002 | DOI | MR

[5] Barron K., Huang Y.Z., Lepowsky J., “Factorization of formal exponentials and uniformization”, J. Algebra, 228 (2000), 551–579 ; arXiv: math.QA/9908151 | DOI | MR | Zbl

[6] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl

[7] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. II. Physical applications”, Ann. Physics, 111 (1978), 111–151 | DOI | MR | Zbl

[8] Blasiak P., Flajolet P., “Combinatorial models of creation-annihilation”, Ann. Physics, 65 (2011), Art. B65c, 78 pp. ; arXiv: 1010.0354

[9] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetimes and DSR algebras: fresh look and old problems”, SIGMA, 6 (2010), 086, 31 pp. ; arXiv: 1005.4429 | DOI | MR | Zbl

[10] Dimitrijević M., Meyer F., Möller L., Wess J., “Gauge theories on the $\kappa$-Minkowski spacetime”, Eur. Phys. J. C Part. Fields, 36 (2004), 117–126 ; arXiv: hep-th/0310116 | DOI | MR | Zbl

[11] Durov N., Meljanac S., Samsarov A., Škoda Z., “A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra”, J. Algebra, 309 (2007), 318–359 ; arXiv: math.RT/0604096 | DOI | MR | Zbl

[12] Freidel L., Livine E.R., “3D quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp. ; arXiv: hep-th/0512113 | DOI | MR | Zbl

[13] Freidel L., Majid S., “Noncommutative harmonic analysis, sampling theory and the Duflo map in $2+1$ quantum gravity”, Classical Quantum Gravity, 25 (2008), 045006, 37 pp. ; arXiv: hep-th/0512113 | DOI | MR | Zbl

[14] Halliday S., Szabo R.J., “Noncommutative field theory on homogeneous gravitational waves”, J. Phys. A: Math. Gen., 39 (2006), 5189–5225 ; arXiv: hep-th/0602036 | DOI | MR | Zbl

[15] Kathotia V., “Kontsevich's universal formula for deformation quantization and the Campbell–Baker–{H}ausdorff formula”, Internat. J. Math., 11 (2000), 523–551 ; arXiv: math.QA/9811174 | DOI | MR | Zbl

[16] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 ; arXiv: q-alg/9709040 | DOI | MR | Zbl

[17] Meljanac S., Krešić-Jurić S., Stojić M., “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C Part. Fields, 51 (2007), 229–240 ; arXiv: hep-th/0702215 | DOI | MR | Zbl

[18] Meljanac S., Škoda Z., Leibniz rules for enveloping algebras, arXiv: 0711.0149

[19] Meljanac S., Stojić M., “New realizations of Lie algebra kappa-deformed Euclidean space”, Eur. Phys. J. C Part. Fields, 47 (2006), 531–539 ; arXiv: hep-th/0605133 | DOI | MR | Zbl

[20] Raševskiĭ P.K., “Associative superenvelope of a Lie algebra and its regular representation and ideals”, Trudy Moskov. Mat. Obšč., 15 (1966), 3–54 | MR

[21] Škoda Z., “Heisenberg double versus deformed derivatives”, Internat. J. Modern Phys. A, 26 (2011), 4845–4854 ; arXiv: 0909.3769 | DOI

[22] Škoda Z., Twisted exterior derivatives for enveloping algebras, arXiv: 0806.0978