@article{SIGMA_2012_8_a12,
author = {Stjepan Meljanac and Zoran \v{S}koda and Dragutin Svrtan},
title = {Exponential formulas and {Lie} algebra type star products},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a12/}
}
TY - JOUR AU - Stjepan Meljanac AU - Zoran Škoda AU - Dragutin Svrtan TI - Exponential formulas and Lie algebra type star products JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a12/ LA - en ID - SIGMA_2012_8_a12 ER -
Stjepan Meljanac; Zoran Škoda; Dragutin Svrtan. Exponential formulas and Lie algebra type star products. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a12/
[1] Amelino-Camelia G., Arzano M., “Coproduct and star product in field theories on Lie-algebra noncommutative space-times”, Phys. Rev. D, 65 (2002), 084044, 8 pp. ; arXiv: hep-th/0105120 | DOI | MR
[2] Arnal D., Cortet J.C., “$\ast$-products in the method of orbits for nilpotent groups”, J. Geom. Phys., 2 (1985), 83–116 | DOI | MR | Zbl
[3] Arnal D., Cortet J.C., Molin P., Pinczon G., “Covariance and geometrical invariance in $\ast$ quantization”, J. Math. Phys., 24 (1983), 276–283 | DOI | MR | Zbl
[4] Aschieri P., Lizzi F., Vitale P., “Twisting all the way: from classical mechanics to quantum fields”, Phys. Rev. D, 77 (2008), 025037, 16 pp. ; arXiv: 0708.3002 | DOI | MR
[5] Barron K., Huang Y.Z., Lepowsky J., “Factorization of formal exponentials and uniformization”, J. Algebra, 228 (2000), 551–579 ; arXiv: math.QA/9908151 | DOI | MR | Zbl
[6] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl
[7] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. II. Physical applications”, Ann. Physics, 111 (1978), 111–151 | DOI | MR | Zbl
[8] Blasiak P., Flajolet P., “Combinatorial models of creation-annihilation”, Ann. Physics, 65 (2011), Art. B65c, 78 pp. ; arXiv: 1010.0354
[9] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetimes and DSR algebras: fresh look and old problems”, SIGMA, 6 (2010), 086, 31 pp. ; arXiv: 1005.4429 | DOI | MR | Zbl
[10] Dimitrijević M., Meyer F., Möller L., Wess J., “Gauge theories on the $\kappa$-Minkowski spacetime”, Eur. Phys. J. C Part. Fields, 36 (2004), 117–126 ; arXiv: hep-th/0310116 | DOI | MR | Zbl
[11] Durov N., Meljanac S., Samsarov A., Škoda Z., “A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra”, J. Algebra, 309 (2007), 318–359 ; arXiv: math.RT/0604096 | DOI | MR | Zbl
[12] Freidel L., Livine E.R., “3D quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp. ; arXiv: hep-th/0512113 | DOI | MR | Zbl
[13] Freidel L., Majid S., “Noncommutative harmonic analysis, sampling theory and the Duflo map in $2+1$ quantum gravity”, Classical Quantum Gravity, 25 (2008), 045006, 37 pp. ; arXiv: hep-th/0512113 | DOI | MR | Zbl
[14] Halliday S., Szabo R.J., “Noncommutative field theory on homogeneous gravitational waves”, J. Phys. A: Math. Gen., 39 (2006), 5189–5225 ; arXiv: hep-th/0602036 | DOI | MR | Zbl
[15] Kathotia V., “Kontsevich's universal formula for deformation quantization and the Campbell–Baker–{H}ausdorff formula”, Internat. J. Math., 11 (2000), 523–551 ; arXiv: math.QA/9811174 | DOI | MR | Zbl
[16] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 ; arXiv: q-alg/9709040 | DOI | MR | Zbl
[17] Meljanac S., Krešić-Jurić S., Stojić M., “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C Part. Fields, 51 (2007), 229–240 ; arXiv: hep-th/0702215 | DOI | MR | Zbl
[18] Meljanac S., Škoda Z., Leibniz rules for enveloping algebras, arXiv: 0711.0149
[19] Meljanac S., Stojić M., “New realizations of Lie algebra kappa-deformed Euclidean space”, Eur. Phys. J. C Part. Fields, 47 (2006), 531–539 ; arXiv: hep-th/0605133 | DOI | MR | Zbl
[20] Raševskiĭ P.K., “Associative superenvelope of a Lie algebra and its regular representation and ideals”, Trudy Moskov. Mat. Obšč., 15 (1966), 3–54 | MR
[21] Škoda Z., “Heisenberg double versus deformed derivatives”, Internat. J. Modern Phys. A, 26 (2011), 4845–4854 ; arXiv: 0909.3769 | DOI
[22] Škoda Z., Twisted exterior derivatives for enveloping algebras, arXiv: 0806.0978