@article{SIGMA_2012_8_a11,
author = {Andrey V. Tsiganov},
title = {New variables of separation for the {Steklov{\textendash}Lyapunov} system},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a11/}
}
Andrey V. Tsiganov. New variables of separation for the Steklov–Lyapunov system. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a11/
[1] Adler M., van Moerbeke P., Vanhaecke P., Algebraic integrability, Painlevé geometry and Lie algebras, A Series of Modern Surveys in Mathematics, 47, Springer-Verlag, Berlin, 2004 | Zbl
[2] Belokolos E.D., Bobenko A.I., Enol'skii V.Z., Its A.R., Matveev V.B., Algebro-geometric approach to nonlinear integrable equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994
[3] Bobenko A.I., “Euler equations on the algebras {$e(3)$} and {${\rm so}(4)$}. Isomorphism of the integrable cases”, Funct. Anal. Appl., 20 (1986), 53–56 | DOI | MR | Zbl
[4] Bolsinov A.V., Fedorov Y.N., Steklov–Lyapunov type systems, Preprint, 2003; available at http://upcommons.upc.edu/e-prints/bitstream/2117/900/4/0303fedorov.pdf
[5] Borisov A.V., Tsiganov A.V. (Editors), Klebsch system. Separation of variables, explicit integration?, RCD, Moscow – Izhevsk, 2009
[6] Bueken P., Vanhaecke P., “The moduli problem for integrable systems: the example of a geodesic flow on ${\rm SO}(4)$”, J. London Math. Soc., 62 (2000), 357–369 | DOI | MR | Zbl
[7] Falqui G., Pedroni M., “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 ; arXiv: nlin.SI/0204029 | DOI | MR | Zbl
[8] Fedorov Y., Basak I., “Separation of variables and explicit theta-function solution of the classical Steklov–Lyapunov systems: a geometric and algebraic geometric background”, Regul. Chaotic Dyn., 16 (2011), 374–395 ; arXiv: 0912.1788 | DOI | MR
[9] Kirchhoff G.R., Vorlesungen über mathematische Physik Mechanik, Leipzig, 1874
[10] Kolosoff G.V., “Sur le mouvement d'un corp solide dans un liquide indéfini”, C.R. Acad. Sci. Paris, 169 (1919), 685–686
[11] Kötter F., “Die von Steklow und Liapunow entdeckten integralen Fälle der Bewegung eines starren Körpers in einer Flüssigkeit”, Sitzungsber. König. Preuss. Akad. Wiss., 6 (1900), 79–87
[12] Kötter F., “Über die Bewegung eines festen Körpers in einer Flussigkeit”, J. für Math., 109 (1892), 51–81, 89–111
[13] Kuznetsov V., Vanhaecke P., “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44 (2002), 1–40 ; arXiv: nlin.SI/0004003 | DOI | MR | Zbl
[14] Lyapunov A.M., “New integrable case of the equations of motion of a rigid body in a fluid”, Fortschr. Math., 25 (1897), 1501–1504
[15] Novikov S.P., Shmel'tser I., “Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik–Shnirel'man–Morse theory (LSM). I”, Funct. Anal. Appl., 15 (1981), 197–207 | DOI | MR
[16] Rubanovsky V.N., “Integrable cases in the problem of a heavy solid moving in a fluid”, Dokl. Akad. Nauk SSSR, 180 (1968), 556–559
[17] Stekloff W., “Ueber die Bewegung eines festen Körpers in einer Flüssigkeit”, Math. Ann., 42 (1893), 273–274 | DOI | MR
[18] Tsiganov A.V., “New variables of separation for particular case of the Kowalevski top”, Regul. Chaotic Dyn., 15 (2010), 659–669 ; arXiv: 1001.4599 | DOI | MR | Zbl
[19] Tsiganov A.V., “On an isomorphism of integrable cases of the Euler equations on the bi-Hamiltonian manifolds ${\rm e}(3)$ and ${\rm so}(4)$”, J. Math. Sci., 136 (2006), 3641–3647 | DOI | MR
[20] Tsiganov A.V., “On bi-Hamiltonian geometry of the Lagrange top”, J. Phys. A: Math. Theor., 41 (2008), 315212, 12 pp. ; arXiv: 0802.3951 | DOI | MR | Zbl
[21] Tsiganov A.V., “On bi-{H}amiltonian structure of some integrable systems on ${\rm so}^*(4)$”, J. Nonlinear Math. Phys., 15 (2008), 171–185 ; arXiv: nlin.SI/0703062 | DOI | MR | Zbl
[22] Tsiganov A.V., “On bi-integrable natural Hamiltonian systems on Riemannian manifolds”, J. Nonlinear Math. Phys., 18 (2011), 245–268 ; arXiv: 1006.3914 | DOI | MR | Zbl
[23] Tsiganov A.V., “On isomorphism of the Steklov–Lyapunov system with the potential motion on the sphere”, Dokl. Math., 71 (2005), 145–147
[24] Tsiganov A.V., “On natural {P}oisson bivectors on the sphere”, J. Phys. A: Math. Theor., 44 (2011), 105203, 21 pp. ; arXiv: 1010.3492 | DOI | MR | Zbl
[25] Tsiganov A.V., “On the Steklov–Lyapunov case of the rigid body motion”, Regul. Chaotic Dyn., 9 (2004), 77–89 ; arXiv: nlin.SI/0406017 | DOI | MR | Zbl
[26] Tsiganov A.V., “On two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A: Math. Gen., 40 (2007), 6395–6406 ; arXiv: nlin.SI/0701062 | DOI | MR | Zbl
[27] Weierstrass K., Mathematische Werke I, Mayer Muller, Berlin, 1894 | Zbl