New variables of separation for the Steklov–Lyapunov system
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra $e(3)=so(3)\ltimes\mathbb R^3$. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov–Lyapunov system and it's gyrostatic deformation.
Keywords: bi-Hamiltonian geometry, variables of separation.
@article{SIGMA_2012_8_a11,
     author = {Andrey V. Tsiganov},
     title = {New variables of separation for the {Steklov{\textendash}Lyapunov} system},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a11/}
}
TY  - JOUR
AU  - Andrey V. Tsiganov
TI  - New variables of separation for the Steklov–Lyapunov system
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a11/
LA  - en
ID  - SIGMA_2012_8_a11
ER  - 
%0 Journal Article
%A Andrey V. Tsiganov
%T New variables of separation for the Steklov–Lyapunov system
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a11/
%G en
%F SIGMA_2012_8_a11
Andrey V. Tsiganov. New variables of separation for the Steklov–Lyapunov system. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a11/

[1] Adler M., van Moerbeke P., Vanhaecke P., Algebraic integrability, Painlevé geometry and Lie algebras, A Series of Modern Surveys in Mathematics, 47, Springer-Verlag, Berlin, 2004 | Zbl

[2] Belokolos E.D., Bobenko A.I., Enol'skii V.Z., Its A.R., Matveev V.B., Algebro-geometric approach to nonlinear integrable equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994

[3] Bobenko A.I., “Euler equations on the algebras {$e(3)$} and {${\rm so}(4)$}. Isomorphism of the integrable cases”, Funct. Anal. Appl., 20 (1986), 53–56 | DOI | MR | Zbl

[4] Bolsinov A.V., Fedorov Y.N., Steklov–Lyapunov type systems, Preprint, 2003; available at http://upcommons.upc.edu/e-prints/bitstream/2117/900/4/0303fedorov.pdf

[5] Borisov A.V., Tsiganov A.V. (Editors), Klebsch system. Separation of variables, explicit integration?, RCD, Moscow – Izhevsk, 2009

[6] Bueken P., Vanhaecke P., “The moduli problem for integrable systems: the example of a geodesic flow on ${\rm SO}(4)$”, J. London Math. Soc., 62 (2000), 357–369 | DOI | MR | Zbl

[7] Falqui G., Pedroni M., “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 ; arXiv: nlin.SI/0204029 | DOI | MR | Zbl

[8] Fedorov Y., Basak I., “Separation of variables and explicit theta-function solution of the classical Steklov–Lyapunov systems: a geometric and algebraic geometric background”, Regul. Chaotic Dyn., 16 (2011), 374–395 ; arXiv: 0912.1788 | DOI | MR

[9] Kirchhoff G.R., Vorlesungen über mathematische Physik Mechanik, Leipzig, 1874

[10] Kolosoff G.V., “Sur le mouvement d'un corp solide dans un liquide indéfini”, C.R. Acad. Sci. Paris, 169 (1919), 685–686

[11] Kötter F., “Die von Steklow und Liapunow entdeckten integralen Fälle der Bewegung eines starren Körpers in einer Flüssigkeit”, Sitzungsber. König. Preuss. Akad. Wiss., 6 (1900), 79–87

[12] Kötter F., “Über die Bewegung eines festen Körpers in einer Flussigkeit”, J. für Math., 109 (1892), 51–81, 89–111

[13] Kuznetsov V., Vanhaecke P., “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44 (2002), 1–40 ; arXiv: nlin.SI/0004003 | DOI | MR | Zbl

[14] Lyapunov A.M., “New integrable case of the equations of motion of a rigid body in a fluid”, Fortschr. Math., 25 (1897), 1501–1504

[15] Novikov S.P., Shmel'tser I., “Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik–Shnirel'man–Morse theory (LSM). I”, Funct. Anal. Appl., 15 (1981), 197–207 | DOI | MR

[16] Rubanovsky V.N., “Integrable cases in the problem of a heavy solid moving in a fluid”, Dokl. Akad. Nauk SSSR, 180 (1968), 556–559

[17] Stekloff W., “Ueber die Bewegung eines festen Körpers in einer Flüssigkeit”, Math. Ann., 42 (1893), 273–274 | DOI | MR

[18] Tsiganov A.V., “New variables of separation for particular case of the Kowalevski top”, Regul. Chaotic Dyn., 15 (2010), 659–669 ; arXiv: 1001.4599 | DOI | MR | Zbl

[19] Tsiganov A.V., “On an isomorphism of integrable cases of the Euler equations on the bi-Hamiltonian manifolds ${\rm e}(3)$ and ${\rm so}(4)$”, J. Math. Sci., 136 (2006), 3641–3647 | DOI | MR

[20] Tsiganov A.V., “On bi-Hamiltonian geometry of the Lagrange top”, J. Phys. A: Math. Theor., 41 (2008), 315212, 12 pp. ; arXiv: 0802.3951 | DOI | MR | Zbl

[21] Tsiganov A.V., “On bi-{H}amiltonian structure of some integrable systems on ${\rm so}^*(4)$”, J. Nonlinear Math. Phys., 15 (2008), 171–185 ; arXiv: nlin.SI/0703062 | DOI | MR | Zbl

[22] Tsiganov A.V., “On bi-integrable natural Hamiltonian systems on Riemannian manifolds”, J. Nonlinear Math. Phys., 18 (2011), 245–268 ; arXiv: 1006.3914 | DOI | MR | Zbl

[23] Tsiganov A.V., “On isomorphism of the Steklov–Lyapunov system with the potential motion on the sphere”, Dokl. Math., 71 (2005), 145–147

[24] Tsiganov A.V., “On natural {P}oisson bivectors on the sphere”, J. Phys. A: Math. Theor., 44 (2011), 105203, 21 pp. ; arXiv: 1010.3492 | DOI | MR | Zbl

[25] Tsiganov A.V., “On the Steklov–Lyapunov case of the rigid body motion”, Regul. Chaotic Dyn., 9 (2004), 77–89 ; arXiv: nlin.SI/0406017 | DOI | MR | Zbl

[26] Tsiganov A.V., “On two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A: Math. Gen., 40 (2007), 6395–6406 ; arXiv: nlin.SI/0701062 | DOI | MR | Zbl

[27] Weierstrass K., Mathematische Werke I, Mayer Muller, Berlin, 1894 | Zbl