Separation of Variables and Contractions on Two-Dimensional Hyperboloid
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper analytic contractions have been established in the $R\to\infty$ contraction limit for exactly solvable basis functions of the Helmholtz equation on the two-dimensional two-sheeted hyperboloid. As a consequence we present some new asymptotic formulae.
Keywords: analytic contraction; separation of variables; Lie group; Helmholtz equation.
@article{SIGMA_2012_8_a104,
     author = {Ernie Kalnins and George S. Pogosyan and Alexander Yakhno},
     title = {Separation of {Variables} and {Contractions} on {Two-Dimensional} {Hyperboloid}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a104/}
}
TY  - JOUR
AU  - Ernie Kalnins
AU  - George S. Pogosyan
AU  - Alexander Yakhno
TI  - Separation of Variables and Contractions on Two-Dimensional Hyperboloid
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a104/
LA  - en
ID  - SIGMA_2012_8_a104
ER  - 
%0 Journal Article
%A Ernie Kalnins
%A George S. Pogosyan
%A Alexander Yakhno
%T Separation of Variables and Contractions on Two-Dimensional Hyperboloid
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a104/
%G en
%F SIGMA_2012_8_a104
Ernie Kalnins; George S. Pogosyan; Alexander Yakhno. Separation of Variables and Contractions on Two-Dimensional Hyperboloid. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a104/

[1] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, McGraw-Hill Book Company, New York, 1953

[2] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, McGraw-Hill Book Company, New York, 1953

[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. III, McGraw-Hill Book Company, New York, 1955 | Zbl

[4] Grosche C., Path integrals, hyperbolic spaces, and Selberg trace formulae, World Scientific Publishing Co. Inc., River Edge, NJ, 1996 | MR | Zbl

[5] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables”, J. Phys. A: Math. Gen., 29 (1996), 5949–5962 | DOI | MR

[6] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere”, J. Math. Phys., 40 (1999), 1549–1573 | DOI | MR

[7] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables. Two-dimensional hyperboloid”, Internat. J. Modern Phys. A, 12 (1997), 53–61 | DOI | MR

[8] Kalnins E. G., Miller Jr. W., “Lie theory and separation of variables. IV: The groups ${\rm SO}(2,1)$ and ${\rm SO}(3)$”, J. Math. Phys., 15 (1974), 1263–1274 | DOI | MR | Zbl

[9] Kalnins E. G., Miller Jr. W., Pogosyan G. S., “Contractions of Lie algebras: applications to special functions and separation of variables”, J. Phys. A: Math. Gen., 32 (1999), 4709–4732 | DOI | MR | Zbl

[10] Olevskiĭ M. N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta\sb 2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sb., 27 (1950), 379–426 | MR | Zbl

[11] Olver F. W. J., Asymptotics and special functions, Acad. Press, New York–London, 1974 | MR

[12] Pogosyan G. S., Sissakian A. N., Winternitz P., “Separation of variables and Lie algebra contractions. Applications to special functions”, Phys. Part. Nuclei, 33 (2002), 235–276, arXiv: math-ph/0310011

[13] Pogosyan G. S., Winternitz P., “Separation of variables and subgroup bases on $n$-dimensional hyperboloids”, J. Math. Phys., 43 (2002), 3387–3410 | DOI | MR | Zbl

[14] Pogosyan G. S., Yakhno A., “Lie algebra contractions and separation of variables. Three-dimensional sphere”, Phys. Atomic Nuclei, 72 (2009), 836–844 | DOI

[15] Pogosyan G. S., Yakhno A., “Lie algebra contractions on two-dimensional hyperboloid”, Phys. Atomic Nuclei, 73 (2010), 499–508 | DOI

[16] Pogosyan G. S., Yakhno A., “Two-dimensional imaginary Lobachevsky space. Separation of variables and contractions”, Phys. Atomic Nuclei, 74 (2011), 1062–1072 | DOI

[17] Watson G. N., A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl

[18] Winternitz P., Lukac I., Smorodinskii Y. A., “Quantum numbers in the little group of the Poincaré group”, Sov. J. Nuclear Phys., 7 (1968), 139–145