Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently Cherednik and Feigin [arXiv:1209.1978] obtained several Rogers–Ramanujan type identities via the nilpotent double affine Hecke algebras (Nil-DAHA). These identities further led to a series of dilogarithm identities, some of which are known, while some are left conjectural. We confirm and explain all of them by showing the connection with $Y$-systems associated with (untwisted and twisted) quantum affine Kac–Moody algebras.
Keywords: double affine Hecke algebra; dilogarithm; $Y$-system.
@article{SIGMA_2012_8_a103,
     author = {Tomoki Nakanishi},
     title = {Note on {Dilogarithm} {Identities} from {Nilpotent} {Double} {Affine} {Hecke} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a103/}
}
TY  - JOUR
AU  - Tomoki Nakanishi
TI  - Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a103/
LA  - en
ID  - SIGMA_2012_8_a103
ER  - 
%0 Journal Article
%A Tomoki Nakanishi
%T Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a103/
%G en
%F SIGMA_2012_8_a103
Tomoki Nakanishi. Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a103/

[1] Cecotti S., Neitzke A., Vafa C., R-twisting and 4d/2d correspondences,, arXiv: 1006.3435[hep-th]

[2] Chapoton F., “Functional identities for the Rogers dilogarithm associated to cluster $Y$-systems”, Bull. London Math. Soc., 37 (2005), 755–760 | DOI | MR | Zbl

[3] Cherednik I., Feigin B., Rogers–Ramanujan type identities and Nil-DAHA, arXiv: (especially version 2) 1209.1978[math.QA]

[4] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., “Periodicities of $T$- and $Y$-systems, dilogarithm identities, and cluster algebras. I: Type $B_r$”, Publ. Res. Inst. Math. Sci. (to appear) , arXiv: 1001.1880[math.QA]

[5] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., “Periodicities of $T$- and $Y$-systems, dilogarithm identities, and cluster algebras. II: Types $C_r$, $F_4$, and $G_2$”, Publ. Res. Inst. Math. Sci. (to appear) , arXiv: 1001.1881[math.QA]

[6] Inoue R., Iyama O., Kuniba A., Nakanishi T., Suzuki J., “Periodicities of $T$-systems and $Y$-systems”, Nagoya Math. J., 197 (2010), 59–174, arXiv: 0812.0667[math.QA] | MR | Zbl

[7] Kashaev R. M., Nakanishi T., Classical and quantum dilogarithm identities, SIGMA, 7 (2011), 102, 29 pp., arXiv: 1104.4630[math.QA] | DOI | MR | Zbl

[8] Lee C. H., Nahm's conjecture and $Y$-system, arXiv: 1109.3667[math.QA] | MR

[9] Nakanishi T., “Dilogarithm identities for conformal field theories and cluster algebras: simply laced case”, Nagoya Math. J., 202 (2011), 23–43, arXiv: 0909.5480[math.QA] | MR | Zbl