@article{SIGMA_2012_8_a103,
author = {Tomoki Nakanishi},
title = {Note on {Dilogarithm} {Identities} from {Nilpotent} {Double} {Affine} {Hecke} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a103/}
}
Tomoki Nakanishi. Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a103/
[1] Cecotti S., Neitzke A., Vafa C., R-twisting and 4d/2d correspondences,, arXiv: 1006.3435[hep-th]
[2] Chapoton F., “Functional identities for the Rogers dilogarithm associated to cluster $Y$-systems”, Bull. London Math. Soc., 37 (2005), 755–760 | DOI | MR | Zbl
[3] Cherednik I., Feigin B., Rogers–Ramanujan type identities and Nil-DAHA, arXiv: (especially version 2) 1209.1978[math.QA]
[4] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., “Periodicities of $T$- and $Y$-systems, dilogarithm identities, and cluster algebras. I: Type $B_r$”, Publ. Res. Inst. Math. Sci. (to appear) , arXiv: 1001.1880[math.QA]
[5] Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., “Periodicities of $T$- and $Y$-systems, dilogarithm identities, and cluster algebras. II: Types $C_r$, $F_4$, and $G_2$”, Publ. Res. Inst. Math. Sci. (to appear) , arXiv: 1001.1881[math.QA]
[6] Inoue R., Iyama O., Kuniba A., Nakanishi T., Suzuki J., “Periodicities of $T$-systems and $Y$-systems”, Nagoya Math. J., 197 (2010), 59–174, arXiv: 0812.0667[math.QA] | MR | Zbl
[7] Kashaev R. M., Nakanishi T., Classical and quantum dilogarithm identities, SIGMA, 7 (2011), 102, 29 pp., arXiv: 1104.4630[math.QA] | DOI | MR | Zbl
[8] Lee C. H., Nahm's conjecture and $Y$-system, arXiv: 1109.3667[math.QA] | MR
[9] Nakanishi T., “Dilogarithm identities for conformal field theories and cluster algebras: simply laced case”, Nagoya Math. J., 202 (2011), 23–43, arXiv: 0909.5480[math.QA] | MR | Zbl