@article{SIGMA_2012_8_a101,
author = {Kanehisa Takasaki},
title = {Old and {New} {Reductions} of {Dispersionless} {Toda} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a101/}
}
Kanehisa Takasaki. Old and New Reductions of Dispersionless Toda Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a101/
[1] Ablowitz M. J., Ladik J. F., “Nonlinear differential-difference equations”, J. Math. Phys., 16 (1975), 598–603 | DOI | MR | Zbl
[2] Bogdanov L. V., Konopelchenko B. G., “Symmetry constraints for dispersionless integrable equations and systems of hydrodynamic type”, Phys. Lett. A, 330 (2004), 448–459, arXiv: nlin.SI/0312013 | DOI | MR | Zbl
[3] Brini A., “The local Gromov–Witten theory of $\mathbb{CP}^1$ and integrable hierarchies”, Comm. Math. Phys., 313 (2012), 571–605, arXiv: 1002.0582 | DOI | MR | Zbl
[4] Brini A., Carlet G., Rossi P., “Integrable hierarchies and the mirror model of local $\mathbb{CP}^1$”, Phys. D, 241 (2012), 2156–2167, arXiv: 1105.4508 | DOI
[5] Carlet G., “The extended bigraded Toda hierarchy”, J. Phys. A: Math. Gen., 39 (2006), 9411–9435, arXiv: math-ph/0604024 | DOI | MR | Zbl
[6] Carlet G., Lorenzoni P., Raimondo A., “The reductions of the dispersionless 2D Toda hierarchy and their Hamiltonian structures”, J. Phys. A: Math. Theor., 43 (2010), 045201, 13 pp., arXiv: 0910.1210 | DOI | MR | Zbl
[7] Chang J.-H., “On the waterbag model of dispersionless KP hierarchy”, J. Phys. A: Math. Gen., 39 (2006), 11217–11230, arXiv: nlin.SI/0603007 | DOI | MR | Zbl
[8] Chang J.-H., “On the waterbag model of the dispersionless KP hierarchy, II”, J. Phys. A: Math. Theor., 40 (2007), 12973–12985, arXiv: nlin.SI/0702014 | DOI | MR | Zbl
[9] Chang J.-H., “Remarks on the waterbag model of dispersionless Toda hierarchy”, J. Nonlinear Math. Phys., 15:3 (2008), 112–123, arXiv: 0709.3859 | DOI | MR
[10] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910 | Zbl
[11] Dijkgraaf R., “Intersection theory, integrable hierarchies and topological field theory”, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, 1992, 95–158, arXiv: hep-th/9291993 | MR | Zbl
[12] Dubrovin B. A., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[13] Dubrovin B. A., “On almost duality for Frobenius manifolds”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 75–132, arXiv: math.DG/0307374 | MR | Zbl
[14] Dubrovin B. A., “On the differential geometry of strongly integrable systems of hydrodynamics type”, Funct. Anal. Appl., 24 (1990), 280–285 | DOI | MR | Zbl
[15] Dubrovin B. A., “On universality of critical behaviour in Hamiltonian PDEs”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 59–109, arXiv: 0804.3790 | MR | Zbl
[16] Dubrovin B. A., Zhang Y., “Extended affine Weyl groups and Frobenius manifolds”, Compositio Math., 111 (1998), 167–219, arXiv: hep-th/9611200 | DOI | MR | Zbl
[17] Eguchi T., Hori K., Yang S. K., “Topological $\sigma$ models and large-$N$ matrix integral”, Internat. J. Modern Phys. A, 10 (1995), 4203–4224, arXiv: hep-th/9503017 | DOI | MR | Zbl
[18] Eguchi T., Yang S. K., “The topological $\mathbb{CP}^1$ model and the large-{$N$} matrix integral”, Modern Phys. Lett. A, 9 (1994), 2893–2902, arXiv: hep-th/9407134 | DOI | MR | Zbl
[19] Ferapontov E. V., Korotkin D. A., Shramchenko V. A., “Boyer–Finley equation and systems of hydrodynamic type”, Classical Quantum Gravity, 19 (2002), L205–L210, arXiv: gr-qc/0401118 | DOI | MR | Zbl
[20] Ferguson J. T., Strachan I. A. B., “Logarithmic deformations of the rational superpotential/Landau–Ginzburg construction of solutions of the WDVV equations”, Comm. Math. Phys., 280 (2008), 1–25, arXiv: math-ph/0605078 | DOI | MR | Zbl
[21] Gibbons J., Tsarev S. P., “Conformal maps and reductions of the Benney equations”, Phys. Lett. A, 258 (1999), 263–271 | DOI | MR | Zbl
[22] Gibbons J., Tsarev S. P., “Reductions of the Benney equations”, Phys. Lett. A, 211 (1996), 19–24 | DOI | MR | Zbl
[23] Guil F., Mañas M., Martínez Alonso L., “The Whitham hierarchies: reductions and hodograph solutions”, J. Phys. A: Math. Gen., 36 (2003), 4047–4062, arXiv: nlin.SI/0209051 | DOI | MR | Zbl
[24] Krichever I. M., “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Comm. Pure Appl. Math., 47 (1994), 437–475, arXiv: hep-th/9205110 | DOI | MR | Zbl
[25] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I”, Math. Ann., 89 (1923), 103–121 | DOI | MR
[26] Mañas M., “$S$-functions, reductions and hodograph solutions of the $r$th dispersionless modified KP and Dym hierarchies”, J. Phys. A: Math. Gen., 37 (2004), 11191–11221, arXiv: nlin.SI/0405028 | DOI | MR | Zbl
[27] Mañas M., Martínez Alonso L., Medina E., “Reductions and hodograph solutions of the dispersionless KP hierarchy”, J. Phys. A: Math. Gen., 35 (2002), 401–417 | DOI | MR | Zbl
[28] Pavlov M. V., “Algebro-geometric approach in the theory of integrable hydrodynamic type systems”, Comm. Math. Phys., 272 (2007), 469–505, arXiv: nlin.SI/0603054 | DOI | MR | Zbl
[29] Riley A., Strachan I. A. B., “A note on the relationship between rational and trigonometric solutions of the WDVV equations”, J. Nonlinear Math. Phys., 14 (2007), 82–94, arXiv: nlin.SI/0605005 | DOI | MR | Zbl
[30] Takasaki K., “Generalized string equations for double Hurwitz numbers”, J. Geom. Phys., 62 (2012), 1135–1156, arXiv: 1012.5554 | DOI | MR | Zbl
[31] Takasaki K., Takebe T., “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7 (1995), 743–808, arXiv: hep-th/9405096 | DOI | MR | Zbl
[32] Takasaki K., Takebe T., “Löwner equations, Hirota equations and reductions of the universal Whitham hierarchy”, J. Phys. A: Math. Theor., 41 (2008), 475206, 27 pp., arXiv: 0808.1444 | DOI | MR | Zbl
[33] Takasaki K., Takebe T., Radial Löwner equation and dispersionless mcKP hierarchy, arXiv: nlin.SI/0601063
[34] Takebe T., Teo L.-P., Zabrodin A., “Löwner equations and dispersionless hierarchies”, J. Phys. A: Math. Gen., 39 (2006), 11479–11501, arXiv: math.CV/0605161 | DOI | MR | Zbl
[35] Tsarev S. P., “Classical differential geometry and integrability of systems of hydrodynamic type”, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 413, Kluwer Acad. Publ., Dordrecht, 1993, 241–249, arXiv: hep-th/9303092 | MR | Zbl
[36] Tsarev S. P., “On Poisson bracket and one-dimensional systems of hydrodynamic type”, Soviet Math. Dokl., 31 (1985), 488–491 | Zbl
[37] Yu L., “Waterbag reductions of the dispersionless discrete KP hierarchy”, J. Phys. A: Math. Gen., 33 (2000), 8127–8138 | DOI | MR | Zbl