Renormalization Method and Mirror Symmetry
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a brief summary of our works [arXiv:1112.4063, arXiv:1201.4501] on constructing higher genus B-model from perturbative quantization of BCOV theory. We analyze Givental's symplectic loop space formalism in the context of B-model geometry on Calabi–Yau manifolds, and explain the Fock space construction via the renormalization techniques of gauge theory. We also give a physics interpretation of the Virasoro constraints as the symmetry of the classical BCOV action functional, and discuss the Virasoro constraints in the quantum theory.
Keywords: BCOV; Calabi–Yau; renormalization; mirror symmetry.
@article{SIGMA_2012_8_a100,
     author = {Si Li},
     title = {Renormalization {Method} and {Mirror} {Symmetry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a100/}
}
TY  - JOUR
AU  - Si Li
TI  - Renormalization Method and Mirror Symmetry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a100/
LA  - en
ID  - SIGMA_2012_8_a100
ER  - 
%0 Journal Article
%A Si Li
%T Renormalization Method and Mirror Symmetry
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a100/
%G en
%F SIGMA_2012_8_a100
Si Li. Renormalization Method and Mirror Symmetry. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a100/

[1] Barannikov S., Extended moduli spaces and mirror symmetry in dimensions {$n>3$}, Ph.D. thesis, University of California, Berkeley, 1999, arXiv: math.AG/9903124 | MR

[2] Barannikov S., “Non-commutative periods and mirror symmetry in higher dimensions”, Comm. Math. Phys., 228 (2002), 281–325 | DOI | MR | Zbl

[3] Barannikov S., “Quantum periods. I: Semi-infinite variations of Hodge structures”, Int. Math. Res. Not., 2001:23 (2001), 1243–1264, arXiv: math.AG/0006193 | DOI | MR | Zbl

[4] Barannikov S., Kontsevich M., “Frobenius manifolds and formality of Lie algebras of polyvector fields”, Int. Math. Res. Not., 1998:4 (1998), 201–215, arXiv: alg-geom/9710032 | DOI | MR | Zbl

[5] Bershadsky M., Cecotti S., Ooguri H., Vafa C., “Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes”, Comm. Math. Phys., 165 (1994), 311–427, arXiv: hep-th/9309140 | DOI | MR | Zbl

[6] Candelas P., de la Ossa X. C., Green P. S., Parkes L., “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys. B, 359 (1991), 21–74 | DOI | MR | Zbl

[7] Coates T., Givental A. B., “Quantum Riemann–Roch, Lefschetz and Serre”, Ann. of Math. (2), 165 (2007), 15–53, arXiv: math.AG/0110142 | DOI | MR | Zbl

[8] Costello K. J., Renormalization and effective field theory, Mathematical Surveys and Monographs, 170, American Mathematical Society, Providence, RI, 2011 | MR | Zbl

[9] Costello K. J., Li S., Open-closed BCOV theory on Calabi–Yau manifolds, in preparation

[10] Costello K. J., Li S., Quantum BCOV theory on Calabi–Yau manifolds and the higher genus B-model, arXiv: 1201.4501

[11] Dubrovin B., Zhang Y., “Frobenius manifolds and Virasoro constraints”, Selecta Math. (N.S.), 5 (1999), 423–466, arXiv: math.AG/9808048 | DOI | MR | Zbl

[12] Eguchi T., Hori K., Xiong C. S., “Quantum cohomology and Virasoro algebra”, Phys. Lett. B, 402 (1997), 71–80, arXiv: hep-th/9703086 | DOI | MR | Zbl

[13] Eguchi T., Jinzenji M., Xiong C. S., “Quantum cohomology and free-field representation”, Nuclear Phys. B, 510 (1998), 608–622, arXiv: hep-th/9709152 | DOI | MR | Zbl

[14] Getzler E., “The Virasoro conjecture for Gromov–Witten invariants”, Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 147–176, arXiv: math.AG/9812026 | DOI | MR | Zbl

[15] Givental A. B., “A mirror theorem for toric complete intersections”, Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math., 160, Birkhäuser Boston, Boston, MA, 1998, 141–175, arXiv: alg-geom/9701016 | MR | Zbl

[16] Givental A. B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1 (2001), 551–568, arXiv: math.AG/0108100 | MR | Zbl

[17] Givental A. B., “Symplectic geometry of Frobenius structures”, Frobenius Manifolds, Aspects Math. E, 36, Vieweg, Wiesbaden, 2004, 91–112, arXiv: math.AG/0305409 | DOI | MR | Zbl

[18] Huang M. X., Klemm A., Quackenbush S., “Topological string theory on compact Calabi–Yau: modularity and boundary conditions”, Homological Mirror Symmetry, Lecture Notes in Phys., 757, Springer, Berlin, 2009, 45–102, arXiv: hep-th/0612125 | MR | Zbl

[19] Kaneko M., Zagier D., “A generalized Jacobi theta function and quasimodular forms”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, 165–172 | MR | Zbl

[20] Li J., Tian G., “Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties”, J. Amer. Math. Soc., 11 (1998), 119–174, arXiv: alg-geom/9602007 | DOI | MR | Zbl

[21] Li S., BCOV theory on the elliptic curve and higher genus mirror symmetry, arXiv: 1112.4063

[22] Li S., Calabi–Yau geometry and higher genus mirror symmetry, Ph.D. thesis, Harvard University, 2011 | MR

[23] Li S., “Feynman graph integrals and almost modular forms”, Commun. Number Theory Phys., 6 (2012), 129–157, arXiv: 1112.4015 | MR

[24] Lian B. H., Liu K., Yau S. T., “Mirror principle, I”, Asian J. Math., 1 (1997), 729–763, arXiv: alg-geom/9712011 | MR | Zbl

[25] Losev A., Shadrin S., Shneiberg I., “Tautological relations in Hodge field theory”, Nuclear Phys. B, 786 (2007), 267–296, arXiv: 0704.1001 | DOI | MR | Zbl

[26] Okounkov A., Pandharipande R., “Virasoro constraints for target curves”, Invent. Math., 163 (2006), 47–108, arXiv: math.AG/0308097 | DOI | MR | Zbl

[27] Ruan Y., Tian G., “A mathematical theory of quantum cohomology”, J. Differential Geom., 42 (1995), 259–367 | MR | Zbl

[28] Shadrin S., “BCOV theory via Givental group action on cohomological fields theories”, Mosc. Math. J., 9 (2009), 411–429, arXiv: 0810.0725 | MR | Zbl

[29] Yamaguchi S., Yau S. T., “Topological string partition functions as polynomials”, J. High Energy Phys., 2004:7 (2004), 047, 20 pp., arXiv: hep-th/0406078 | DOI | MR