@article{SIGMA_2012_8_a1,
author = {Benjamin Bahr and Rodolfo Gambini and Jorge Pullin},
title = {Discretisations, constraints and diffeomorphisms in quantum gravity},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a1/}
}
TY - JOUR AU - Benjamin Bahr AU - Rodolfo Gambini AU - Jorge Pullin TI - Discretisations, constraints and diffeomorphisms in quantum gravity JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a1/ LA - en ID - SIGMA_2012_8_a1 ER -
Benjamin Bahr; Rodolfo Gambini; Jorge Pullin. Discretisations, constraints and diffeomorphisms in quantum gravity. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a1/
[1] Wald R.M., General relativity, University of Chicago Press, Chicago, IL, 1984 | MR | Zbl
[2] Hojman S.A., Kuchar K., Teitelboim C., “Geometrodynamics regained”, Ann. Physics, 96 (1976), 88–135 | DOI | MR | Zbl
[3] Bergmann P.G., Komar A., “The coordinate group symmetries of general relativity”, Internat. J. Theoret. Phys., 5 (1972), 15–28 | DOI | MR
[4] Hartle J.B., Hawking S.W., “Wave function of the universe”, Phys. Rev. D, 28 (1983), 2960–2975 | DOI | MR
[5] Dirac P.A.M., “The Theory of gravitation in Hamiltonian form”, Proc. Roy. Soc. London. Ser. A, 246 (1958), 333–343 | DOI | MR | Zbl
[6] DeWitt B.S., “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160 (1967), 1113–1148 | DOI | Zbl
[7] Loll R., “Discrete approaches to quantum gravity in four dimensions”, Living Rev. Relativity, 1 (1998), 13, 53 pp. ; arXiv: gr-qc/9805049 | MR | Zbl
[8] Ambjørn J., Jurkiewicz J., Loll R., “Causal dynamical triangulations and the quest for quantum gravity”, Foundations of Space and Time: Reflections on Quantum Gravity, Cambridge University Press, Cambridge, 2011, 1–19; arXiv: 1004.0352
[9] Dowker F., “Causal sets as discrete spacetime”, Contemp. Phys., 47 (2006), 1–9 | DOI
[10] Konopka T., Markopoulou F., Smolin L., Quantum graphity, arXiv: hep-th/0611197
[11] Ashtekar A., Lewandowski J., Marolf D., Mourao J., Thiemann T., “Quantization of diffeomorphism invariant theories of connections with local degrees of freedom”, J. Math. Phys., 36 (1995), 6456–6493, arXiv: ; Thiemann T., Modern canonical quantum general relativity, arXiv: ; Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 gr-qc/9504018gr-qc/0110034 | DOI | MR | Zbl | DOI | MR | Zbl
[12] Perez A., “Spin foam models for quantum gravity”, Classical Quantum Gravity, 20 (2003), R43–R104, arXiv: ; Perez A., “Topological QFT and spin foams”, Living Rev. (to appear) gr-qc/0301113 | DOI | MR | Zbl
[13] Rovelli C., “A new look at loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 114005, 24 pp. ; arXiv: 1004.1780 | DOI | MR | Zbl
[14] Rovelli C., Smolin L., “Spin networks and quantum gravity”, Phys. Rev. D, 52 (1995), 5743–5759 ; arXiv: gr-qc/9505006 | DOI | MR
[15] Piran T., Williams R.M., “Three-plus-one formulation of Regge calculus”, Phys. Rev. D, 33 (1986), 1622–1633 ; Friedman J.L., Jack I., “$(3+1)$ Regge calculus with conserved momentum and Hamiltonian constraints”, J. Math. Phys., 27 (1986), 2973–2986 ; Loll R., “On the diffeomorphism commutators of lattice quantum gravity”, Classical Quantum Gravity, 15 (1998), 799–809, arXiv: gr-qc/9708025 | DOI | MR | DOI | MR | DOI | MR | Zbl
[16] Thiemann T., “Quantum spin dynamics (QSD)”, Classical Quantum Gravity, 15 (1998), 839–873, arXiv: gr-qc/9606089 | DOI | MR | Zbl
[17] Lewandowski J., Marolf D., “Loop constraints: A habitat and their algebra”, Internat. J. Modern Phys. D, 7 (1998), 299–330, arXiv: ; Gambini R., Lewandowski J., Marolf D., Pullin J., “On the consistency of the constraint algebra in spin network quantum gravity”, Internat. J. Modern Phys. D, 7 (1998), 97–109 ; arXiv: gr-qc/9710016gr-qc/9710018 | DOI | MR | Zbl | DOI | MR | Zbl
[18] Thiemann T., “Quantum spin dynamics (QSD). III. Quantum constraint algebra and physical scalar product in quantum general relativity”, Classical Quantum Gravity, 15 (1998), 1207–1247 ; arXiv: gr-qc/9705017 | DOI | MR | Zbl
[19] Perez A., “On the regularization ambiguities in loop quantum gravity”, Phys. Rev. D, 73 (2006), 044007, 18 pp. ; arXiv: gr-qc/0509118 | DOI | MR
[20] Yee K., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas and Propagation, 14 (1966), 302–307 | DOI | Zbl
[21] Regge T., “General relativity without coordinates”, Nuovo Cimento, 19 (1961), 558–571 | DOI | MR
[22] Marsden J.E., West M., “Discrete mechanics and variational integrators”, Acta Numer., 10 (2001), 357–514 | DOI | MR | Zbl
[23] Bahr B., Dittrich B., “Improved and perfect actions in discrete gravity”, Phys. Rev. D, 80 (2009), 124030, 15 pp. ; arXiv: 0907.4323 | DOI
[24] Miller W.A., “The geometrodynamic content of the Regge equations as illuminated by the boundary of a boundary principle”, Found. Phys., 16 (1986), 143–169 ; Hamber H.W., Williams R.M., “Gauge invariance in simplicial gravity”, Nuclear Phys. B, 487 (1997), 345–408, arXiv: ; Morse P.A., “Approximate diffeomorphism invariance in near-flat simplicial geometries”, Classical Quantum Gravity, 9 (1992), 2489–2504 ; Gentle A.P., Kheyfets A., McDonald J.R., Miller W.A., “A Kirchoff-like conservation law in Regge calculus”, Classical Quantum Gravity, 26 (2009), 015005, 11 pp., arXiv: hep-th/9607153http://stacks.iop.org/0264-9381/9/24890807.3041 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[25] Dittrich B., “Diffeomorphism symmetry in quantum gravity models”, Adv. Sci. Lett., 2 (2009), 151–163 ; arXiv: 0810.3594 | DOI
[26] Hamber H.W., Williams R.M., “Simplicial quantum gravity in three-dimensions: analytical and numerical results”, Phys. Rev. D, 47 (1993), 510–532 | DOI | MR
[27] Rocek M., Williams R.M., “Quantum Regge calculus”, Phys. Lett. B, 104 (1981), 31–37 ; Rocek M., Williams R.M., “The quantization of Regge calculus”, Z. Phys. C, 21 (1984), 371–381 | DOI | MR | DOI | MR
[28] Dittrich B., Freidel L., Speziale S., “Linearized dynamics from the 4-simplex Regge action”, Phys. Rev. D, 76 (2007), 104020, 15 pp. ; arXiv: 0707.4513 | DOI
[29] Bahr B., Dittrich B., “(Broken) gauge symmetries and constraints in Regge calculus”, Classical Quantum Gravity, 26 (2009), 225011, 34 pp., arXiv: 0905.1670 | DOI | MR | Zbl
[30] Conrady F., Freidel L., “Semiclassical limit of 4-dimensional spin foam models”, Phys. Rev. D, 78 (2008), 104023, 18 pp., arXiv: ; Barrett J.W., Dowdall R.J., Fairbairn W.J., Gomes H., Hellmann F., “Asymptotic analysis of the Engle–Pereira–Rovelli–Livine four-simplex amplitude”, J. Math. Phys., 50 (2009), 112504, 30 pp., arXiv: ; Barrett J.W., Dowdall R.J., Fairbairn W.J., Gomes H., Hellmann F., Pereira R., Asymptotics of 4d spin foam models, arXiv: 0809.22800902.11701003.1886 | DOI | MR | DOI | MR | Zbl
[31] Alexandrov S., Roche P., “Critical overview of loops and foams”, Phys. Rep., 506 (2011), 41–86, arXiv: ; Dittrich B., Ryan J.P., “Simplicity in simplicial phase space”, Phys. Rev. D, 82 (2010), 064026, 19 pp., arXiv: 1009.44751006.4295 | DOI | DOI
[32] Dittrich B., Höhn P.A., “From covariant to canonical formulations of discrete gravity”, Classical Quantum Gravity, 27 (2010), 155001, 37 pp. ; arXiv: 0912.1817 | DOI | MR | Zbl
[33] Bahr B., Dittrich B., Steinhaus S., “Perfect discretization of reparametrization invariant path integrals”, Phys. Rev. D, 83 (2011), 105026, 19 pp. ; arXiv: 1101.4775 | DOI
[34] Rovelli C., Speziale S., “Reconcile Planck-scale discreteness and the Lorentz–Fitzgerald contraction”, Phys. Rev. D, 67 (2003), 064019, 11 pp. ; arXiv: gr-qc/0205108 | DOI | MR | Zbl
[35] Di Bartolo C., Gambini R., Pullin J., “Canonical quantization of constrained theories on discrete space-time lattices”, Classical Quantum Gravity, 19 (2002), 5275–5296, arXiv: ; Di Bartolo C., Gambini R., Porto R., Pullin J., “Dirac-like approach for consistent discretizations of classical constrained theories”, J. Math. Phys., 46 (2005), 012901, 14 pp., arXiv: ; Di Bartolo C., Gambini R., Pullin J., “Consistent and mimetic discretizations in general relativity”, J. Math. Phys., 46 (2005), 032501, 18 pp., arXiv: ; Gambini R., Pullin J., “Classical and quantum general relativity: a new paradigm”, Gen. Relativity Gravitation, 37 (2005), 1689–1694, arXiv: ; Gambini R., Pullin J., “Classical and quantum general relativity: a new paradigm”, Internat. J. Modern Phys. D, 14 (2005), 2355–2360 ; Gambini R., Pullin J., “Consistent discretizations as a road to quantum gravity”, Approaches to Quantum Gravity, ed. D. Oriti, Cambridge University Press, Cambridge, 2009, 400–414, arXiv: ; Gambini R., Pullin J., “Discrete space-time”, 100 Years of Relativity – Space-Time Structure: Einstein and Beyond, ed. A. Ashtekar, World Scientific, Singapore, 2006, 415–444, arXiv: gr-qc/0205123gr-qc/0405131gr-qc/0404052gr-qc/0505052gr-qc/0512065gr-qc/0505023 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR | MR
[36] Jaroszkiewicz G., Norton K., “Principles of discrete time mechanics. I. Particle systems”, J. Phys. A: Math. Gen., 30 (1997), 3115–3144 ; arXiv: hep-th/9703079 | DOI | MR | Zbl
[37] Gambini R., Pullin J., “Discrete quantum gravity: cosmological examples”, Classical Quantum Gravity, 20 (2003), 3341–3364 ; arXiv: gr-qc/0212033 | DOI | MR | Zbl
[38] Gambini R., Ponce M., Pullin J., “Consistent discretizations: the Gowdy spacetimes”, Phys. Rev. D, 72 (2005), 024031, 9 pp. ; arXiv: gr-qc/0505043 | DOI | MR
[39] Thiemann T., “The Phoenix Project: master constraint programme for loop quantum gravity”, Classical Quantum Gravity, 23 (2006), 2211–2247, arXiv: gr-qc/0305080 | DOI | MR | Zbl
[40] Campiglia M., Di Bartolo C., Gambini R., Pullin J., “Uniform discretizations: a quantization procedure for totally constrained systems including gravity”, J. Phys. Conf. Ser., 67 (2007), 012020, 6 pp., arXiv: ; Campiglia M., Di Bartolo C., Gambini R., Pullin J., “Uniform discretizations: a new approach for the quantization of totally constrained systems”, Phys. Rev. D, 74 (2006), 124012, 15 pp., arXiv: gr-qc/0606121gr-qc/0610023 | DOI | DOI | MR
[41] Gomberoff A., Marolf D., “On group averaging for $\mathrm{SO}(n,1)$”, Internat. J. Modern Phys. D, 8 (1999), 519–535 ; arXiv: gr-qc/9902069 | DOI | MR | Zbl
[42] Louko J., Rovelli C., “Refined algebraic quantization in the oscillator representation of $\mathrm{SL}(2,\mathbf R)$”, J. Math. Phys., 41 (2000), 132–155 ; arXiv: gr-qc/9907004 | DOI | MR | Zbl
[43] Gambini R., Pullin J., Rastgoo S., “Quantum scalar field in quantum gravity: the vacuum in the spherically symmetric case”, Classical Quantum Gravity, 26 (2009), 215011, 15 pp., arXiv: ; Gambini R., Pullin J., Rastgoo S., “Quantum scalar field in quantum gravity: the propagator and Lorentz invariance in the spherically symmetric case”, Gen. Relativity Gravitation, 43 (2011), 3569–3592, arXiv: 0906.17741105.0667 | DOI | MR | Zbl | DOI | MR
[44] Porter J., “A new approach to the Regge calculus. I. Formalism”, Classical Quantum Gravity, 4 (1987), 375–389 ; Kheyfets A., LaFave N.J., Miller W.A., “Null-strut calculus. I. Kinematics”, Phys. Rev. D, 41 (1990), 3628–3636 http://stacks.iop.org/0264-9381/4/375 | DOI | MR | Zbl | DOI | MR
[45] Rivin I., Schlenker J.-M., On the Schlaefli differential formula, arXiv: math.DG/0001176
[46] Freidel L., Louapre D., “Diffeomorphisms and spin foam models”, Nuclear Phys. B, 662 (2003), 279–298 ; arXiv: gr-qc/0212001 | DOI | MR | Zbl
[47] Piran T., Strominger A., “Solutions of the Regge equations”, Classical Quantum Gravity, 3 (1986), 97–102 http://stacks.iop.org/0264-9381/3/97 | DOI | MR | Zbl
[48] Barrett J.W., Galassi M., Miller W.A., Sorkin R.D., Tuckey P.A., Williams R.M., “Paralellizable implicit evolution scheme for Regge calculus”, Internat. J. Theoret. Phys., 36 (1997), 815–839 ; arXiv: gr-qc/9411008 | DOI | MR | Zbl
[49] Dittrich B., Ryan J.P., “Phase space descriptions for simplicial 4D geometries”, Classical Quantum Gravity, 28 (2011), 065006, 34 pp. ; arXiv: 0807.2806 | DOI | MR | Zbl
[50] Bahr B., Dittrich B., “Regge calculus from a new angle”, New J. Phys., 12 (2010), 033010, 10 pp. ; arXiv: 0907.4325 | DOI | MR
[51] Dittrich B., Höhn P.A., Canonical simplicial gravity, arXiv: 1108.1974
[52] Lehner L., “Numerical relativity: a review”, Classical Quantum Gravity, 18 (2001), R25–R86 ; arXiv: gr-qc/0106072 | DOI | MR | Zbl
[53] 't Hooft G., Veltman M.J.G., “Regularization and renormalization of gauge fields”, Nuclear Phys. B, 44 (1972), 189–213 | DOI | MR
[54] Ashtekar A., Campiglia M., Henderson A., “Loop quantum cosmology and spin foams”, Phys. Lett. B, 681 (2009), 347–352, arXiv: ; Rovelli C., Vidotto F., “On the spinfoam expansion in cosmology”, Classical Quantum Gravity, 27 (2010), 145005, 10 pp., arXiv: ; Henderson A., Rovelli C., Vidotto F., Wilson-Ewing E., “Local spinfoam expansion in loop quantum cosmology”, Classical Quantum Gravity, 28 (2011), 025003, 10 pp., arXiv: 0909.42210911.30971010.0502 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[55] Rovelli C., Discretizing parametrized systems: the magic of Ditt-invariance, arXiv: 1107.2310
[56] Hasenfratz P., Niedermayer F., “Perfect lattice action for asymptotically free theories”, Nuclear Phys. B, 414 (1994), 785–814, arXiv: ; Hasenfratz P., “Prospects for perfect actions”, Nuclear Phys. B Proc. Suppl., 63 (1998), 53–58, arXiv: hep-lat/9308004hep-lat/9709110 | DOI | MR | DOI | MR
[57] Bietenholz W., “Perfect scalars on the lattice”, Internat. J. Modern Phys. A, 15 (2000), 3341–3367 ; arXiv: hep-lat/9911015 | DOI | Zbl
[58] Bahr B., Dittrich B., He S., “Coarse graining theories with gauge symmetries”, New J. Phys., 13 (2011), 045009, 34 pp. ; arXiv: 1011.3667 | DOI
[59] Migdal A.A., “Recursion equations in gauge theories”, Sov. Phys. JETP, 42 (1975), 413–439
[60] Dittrich B., Eckert F.C., Martin-Benito M., Coarse graining methods for spin net and spin foam models, arXiv: 1109.4927
[61] Ponzano G., Regge T., “Semiclassical limit of Racah coefficients”, Spectroscopic and Group Theoretical Methods in Physics, ed. F. Bloch, John Wiley and Sons, Inc., New York, 1968, 1–58
[62] Barrett J.W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2009), 155014, 48 pp. ; arXiv: 0803.3319 | DOI | Zbl
[63] Ambjørn J., Jurkiewicz J., Loll R., “Semiclassical universe from first principles”, Phys. Lett. B, 607 (2005), 205–213, arXiv: ; Ambjørn J., Görlich A., Jurkiewicz J., Loll R., Gizbert-Studnicki J., Trzesniewski T., “The semiclassical limit of causal dynamical triangulations”, Nuclear Phys. B, 849 (2011), 144–165, arXiv: hep-th/04111521102.3929 | DOI | DOI | MR | Zbl
[64] Bonzom V., Gurau R., Riello A., Rivasseau V., “Critical behavior of colored tensor models in the large $N$ limit”, Nuclear Phys. B, 853 (2011), 174–195 ; arXiv: 1105.3122 | DOI
[65] Barrett J.W., “Quantum gravity as topological quantum field theory”, J. Math. Phys., 36 (1995), 6161–6179 ; arXiv: gr-qc/9506070 | DOI | MR | Zbl
[66] Pfeiffer H., “Diffeomorphisms from finite triangulations and absence of ‘local’ degrees of freedom”, Phys. Lett. B, 591 (2004), 197–201, arXiv: ; Pfeiffer H., Quantum general relativity and the classification of smooth manifolds, arXiv: gr-qc/0312060gr-qc/0404088 | DOI | MR
[67] Bahr B., Dittrich B., Ryan J.P., Spin foam models with finite groups, arXiv: 1103.6264