@article{SIGMA_2012_8_a0,
author = {David Brizuela and Daniel Cartin and Gaurav Khanna},
title = {Numerical techniques in loop quantum cosmology},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a0/}
}
David Brizuela; Daniel Cartin; Gaurav Khanna. Numerical techniques in loop quantum cosmology. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a0/
[1] Ashtekar A., “Loop quantum cosmology: an overview”, Gen. Relativity Gravitation, 41 (2009), 707–741 ; arXiv: 0812.177 | DOI | MR | Zbl
[2] Ashtekar A., Bojowald M., “Quantum geometry and the Schwarzschild singularity”, Classical Quantum Gravity, 23 (2006), 391–411 ; arXiv: gr-qc/0509075 | DOI | MR | Zbl
[3] Ashtekar A., Corichi A., Singh P., “Robustness of key features of loop quantum cosmology”, Phys. Rev. D, 77 (2008), 024046, 17 pp. ; arXiv: 0710.3565 | DOI | MR
[4] Ashtekar A., Pawlowski T., Positive cosmological constant in loop quantum cosmology, arXiv: 1112.0360
[5] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang”, Phys. Rev. Lett., 96 (2006), 141301, 4 pp., arXiv: gr-qc/0602086 | DOI | MR
[6] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: improved dynamics”, Phys. Rev. D, 74 (2006), 084003, 23 pp. ; arXiv: gr-qc/0607039 | DOI | MR | Zbl
[7] Ashtekar A., Pawlowski T., Singh P., Vandersloot K., “Loop quantum cosmology of $k=1$ FRW models”, Phys. Rev. D, 75 (2007), 024035, 26 pp. ; arXiv: gr-qc/0612104 | DOI | MR | Zbl
[8] Ashtekar A., Singh P., “Loop quantum cosmology: a status report”, Classical Quantum Gravity, 28 (2011), 213001, 138 pp. ; arXiv: 1108.0893 | DOI | Zbl
[9] Ashtekar A., Wilson-Ewing E., “Loop quantum cosmology of Bianchi type I models”, Phys. Rev. D, 79 (2009), 083535, 21 pp. ; arXiv: 0903.3397 | DOI | MR
[10] Ashtekar A., Wilson-Ewing E., “Loop quantum cosmology of Bianchi type II models”, Phys. Rev. D, 80 (2009), 123532, 16 pp. ; arXiv: 0910.1278 | DOI | MR
[11] Banerjee K., Date G., “Discreteness corrections to the effective Hamiltonian of isotropic loop quantum cosmology”, Classical Quantum Gravity, 22 (2005), 2017–2033 ; arXiv: gr-qc/0501102 | DOI | MR | Zbl
[12] Bentivegna E., Pawlowski T., “Anti-de Sitter universe dynamics in LQC”, Phys. Rev. D, 77 (2008), 124025, 17 pp. ; arXiv: 0803.4446 | DOI | MR | Zbl
[13] Böhmer C.G., Vandersloot K., “Loop quantum dynamics of the Schwarzschild interior”, Phys. Rev. D, 76 (2007), 104030, 11 pp. ; arXiv: 0709.2129 | DOI | MR
[14] Bojowald M., “Absence of singularity in loop quantum cosmology”, Phys. Rev. Lett., 86 (2001), 5227–5230 ; arXiv: gr-qc/0102069 | DOI | MR
[15] Bojowald M., “Inflation from quantum geometry”, Phys. Rev. Lett., 89 (2002), 261301, 4 pp. ; arXiv: gr-qc/206054 | DOI | MR
[16] Bojowald M., “Isotropic loop quantum cosmology”, Classical Quantum Gravity, 19 (2002), 2717–2741 ; arXiv: gr-qc/0207038 | DOI | MR | Zbl
[17] Bojowald M., “Loop quantum cosmology: recent progress”, Pramana, 63 (2004), 765–776 ; arXiv: gr-qc/0402053 | DOI
[18] Bojowald M., “Homogeneous loop quantum cosmology”, Classical Quantum Gravity, 20 (2003), 2595–2615, arXiv: ; Bojowald M., Date G., Vandersloot K., “Homogeneous loop quantum cosmology: the role of the spin connection”, Classical Quantum Gravity, 21 (2004), 1253–1278, arXiv: gr-qc/0303073gr-qc/0311004 | DOI | MR | Zbl | DOI | MR | Zbl
[19] Bojowald M., Brizuela D., Hernández H.H., Koop M.J., Morales-Técotl H.A., “High-order quantum back-reaction and quantum cosmology with a positive cosmological constant”, Phys. Rev. D, 84 (2011), 043514, 21 pp. ; arXiv: 1011.3022 | DOI
[20] Bojowald M., Calcagni G., Tsujikawa S., “Observational constraints on loop quantum cosmology”, Phys. Rev. Lett., 107 (2011), 211302, 5 pp. ; arXiv: 1101.5391 | DOI
[21] Bojowald M., Cartin D., Khanna G., “Lattice refining loop quantum cosmology, anisotropic models and stability”, Phys. Rev. D, 76 (2007), 064018, 13 pp. ; arXiv: 0704.1137 | DOI | MR
[22] Bojowald M., Date G., “Consistency conditions for fundamentally discrete theories”, Classical Quantum Gravity, 21 (2004), 121–143 ; arXiv: gr-qc/0307083 | DOI | MR | Zbl
[23] Bojowald M., Date G., “Quantum suppression of the general chaotic behavior close to cosmological singularities”, Phys. Rev. Lett., 92 (2004), 071302, 4 pp. ; arXiv: gr-qc/0311003 | DOI
[24] Bojowald M., Hernández H.H., Skirzewski A., “Effective equations for isotropic quantum cosmology including matter”, Phys. Rev. D, 76 (2007), 063511, 24 pp. ; arXiv: 0706.1057 | DOI | MR
[25] Bojowald M., Sandhöfer B., Skirzewski A., Tsobanjan A., “Effective constraints for quantum systems”, Rev. Math. Phys., 21 (2009), 111–154 ; arXiv: 0804.3365 | DOI | MR | Zbl
[26] Bojowald M., Skirzewski A., “Effective equations of motion for quantum systems”, Rev. Math. Phys., 18 (2006), 713–746 ; arXiv: math-ph/0511043 | DOI | MR
[27] Bojowald M., Tsobanjan A., “Effective constraints and physical coherent states in quantum cosmology: a numerical comparison”, Classical Quantum Gravity, 27 (2010), 145004, 22 pp. ; arXiv: 0911.4950 | DOI | MR | Zbl
[28] Bojowald M., Vandersloot K., “Loop quantum cosmology, boundary proposals, and inflation”, Phys. Rev. D, 67 (2003), 124023, 10 pp. ; arXiv: gr-qc/0303072 | DOI | MR
[29] Brizuela D., Mena Marugán G.A., Pawlowski T., “Big bounce and inhomogeneities”, Classical Quantum Gravity, 27 (2010), 052001, 8 pp., arXiv: ; Brizuela D., Mena Marugán G.A., Pawlowski T., Effective dynamics of the hybrid quantization of the Gowdy $T^{3}$ universe, arXiv: 0902.06971106.3793 | DOI | MR | Zbl
[30] Cartin D., Khanna G., Bojowald M., “Generating function techniques for loop quantum cosmology”, Classical Quantum Gravity, 21 (2004), 4495–4509 ; arXiv: gr-qc/0405126 | DOI | MR | Zbl
[31] Cartin D., Khanna G., “Absence of pre-classical solutions in Bianchi I loop quantum cosmology”, Phys. Rev. Lett., 94 (2005), 111302, 4 pp. ; arXiv: gr-qc/0501016 | DOI
[32] Cartin D., Khanna G., “Separable sequences in Bianchi I loop quantum cosmology”, Phys. Rev. D, 72 (2005), 084008, 6 pp. ; arXiv: gr-qc/0506024 | DOI | MR
[33] Cartin D., Khanna G., “Wave functions for the Schwarzschild black hole interior”, Phys. Rev. D, 73 (2006), 104009, 13 pp. ; arXiv: gr-qc/0602025 | DOI | MR
[34] Chiou D.-W., “Loop quantum cosmology in Bianchi type I models: analytical investigation”, Phys. Rev. D, 75 (2006), 024029, 33 pp. ; arXiv: gr-qc/0609029 | DOI | MR
[35] Chiou D.-W., “Effective dynamics, big bounces and scaling symmetry in Bianchi I loop quantum cosmology”, Phys. Rev. D, 76 (2007), 124037, 19 pp. ; arXiv: 0710.0416 | DOI | MR
[36] Chiou D.-W., Vandersloot K., “The behavior of non-linear anisotropies in bouncing Bianchi I models of loop quantum cosmology”, Phys. Rev. D, 76 (2007), 084015, 15 pp. ; arXiv: 0707.2548 | DOI | MR
[37] Chiou D.-W., “Phenomenological loop quantum geometry of the Schwarzschild black hole”, Phys. Rev. D, 78 (2008), 064040, 21 pp. ; arXiv: 0807.0665 | DOI
[38] Chiou D.-W., Fi L.-F., “Loop quantum cosmology with higher order holonomy corrections”, Phys. Rev. D., 80 (2009), 043512, 19 pp. ; arXiv: 0907.0640 | DOI | MR
[39] Chiou D.-W., Geiller M., “Unimodular loop quantum cosmology”, Phys. Rev. D, 82 (2010), 064012, 16 pp. ; arXiv: 1007.0735 | DOI | MR
[40] Corichi A., Singh P., “Is loop quantization in cosmology unique?”, Phys. Rev. D, 78 (2008), 023034, 13 pp. ; arXiv: 0805.0136 | DOI | MR
[41] Date G., “Absence of the Kasner singularity in the effective dynamics from loop quantum cosmology”, Phys. Rev. D, 71 (2005), 127502, 4 pp. ; arXiv: gr-qc/0505002 | DOI | MR
[42] Elaydi S.N., An introduction to difference equations, Undergraduate Texts in Mathematics, 3rd ed., Springer, New York, 2005 | MR | Zbl
[43] Grain J., Barrau A., “Cosmological footprints of loop quantum gravity”, Phys. Rev. Lett., 102 (2009), 081301, 4 pp. ; arXiv: 0902.0145 | DOI | MR
[44] Green D., Unruh W.G., “Difficulties with recollapsing models in closed isotropic loop quantum cosmology”, Phys. Rev. D, 70 (2004), 103502, 7 pp. ; arXiv: gr-qc/0408074 | DOI
[45] Hossain G.M., “Primordial density perturbations in effective loop quantum cosmology”, Classical Quantum Gravity, 22 (2005), 2511–2532 ; arXiv: gr-qc/0411012 | DOI | MR | Zbl
[46] Joe A., Khanna G., “An efficient numerical technique for solving lattice-refined models in loop quantum cosmology” (to appear)
[47] Kaminski W., Pawlowski T., “The LQC evolution operator of FRW universe with positive cosmological constant”, Phys. Rev. D, 81 (2010), 024014, 9 pp. ; arXiv: 0912.0162 | DOI
[48] Kiefer C., “Wave packets in minisuperspace”, Phys. Rev. D, 38 (1988), 1761–1772 | DOI | MR
[49] Laguna P., “Numerical analysis of the big bounce in loop quantum cosmology”, Phys. Rev. D, 75 (2007), 024033, 5 pp. ; arXiv: gr-qc/0608117 | DOI | MR
[50] Martín-Benito M., Garay L.J., Mena Marugán G.A., “Hybrid quantum Gowdy cosmology: combining loop and Fock quantizations”, Phys. Rev. D, 78 (2008), 083516, 5 pp., arXiv: ; Garay L.J., Martín-Benito M., Mena Marugán G.A., “Inhomogeneous loop quantum cosmology: hybrid quantization of the Gowdy model”, Phys. Rev. D, 82 (2010), 044048, 17 pp., arXiv: 0804.10981005.5654 | DOI | MR | DOI
[51] Martín-Benito M., Mena Marugán G.A., Olmedo J., “Further improvements in the understanding of isotropic loop quantum cosmology”, Phys. Rev. D, 80 (2009), 104015, 11 pp. ; arXiv: 0909.2829 | DOI
[52] Martín Benito M., Mena Marugán G.A., Pawlowski T., “Loop quantization of vacuum Bianchi I cosmology”, Phys. Rev. D, 78 (2008), 064008, 11 pp. ; arXiv: 0804.3157 | DOI | MR
[53] Martín-Benito M., Mena Marugán G.A., Pawlowski T., “Physical evolution in loop quantum cosmology: the example of the vacuum Bianchi I model”, Phys. Rev. D, 80 (2009), 084038, 23 pp. ; arXiv: 0906.3751 | DOI | MR
[54] Martín-Benito M., Mena Marugán G.A., Wilson-Ewing E., “Hybrid quantization: from Bianchi I to the Gowdy model”, Phys. Rev. D, 82 (2010), 084012, 11 pp. ; arXiv: 1006.2369 | DOI
[55] Meissner K.A., “Black hole entropy in loop quantum gravity”, Classical Quantum Gravity, 21 (2004), 5245–5251 ; arXiv: gr-qc/0407052 | DOI | MR | Zbl
[56] Mena Marugán G.A., Olmedo J., Pawlowski T., “Prescriptions in loop quantum cosmology: a comparative analysis”, Phys. Rev. D, 84 (2011), 064012, 18 pp. ; arXiv: 1108.0829 | DOI | MR
[57] Mielczarek J., “Possible observational effects of loop quantum cosmology”, Phys. Rev. D, 81 (2010), 063503, 12 pp. ; arXiv: 0908.4329 | DOI
[58] Modesto L., “The Kantowski–Sachs space-time in loop quantum gravity”, Internat. J. Theoret. Phys., 45 (2006), 2235–2246 ; arXiv: gr-qc/0411032 | DOI | MR | Zbl
[59] Nelson W., Sakellariadou M., “Numerical techniques for solving the quantum constraint equation of generic lattice-refined models in loop quantum cosmology”, Phys. Rev. D, 78 (2008), 024030, 10 pp. ; arXiv: 0803.4483 | DOI | MR
[60] Nelson W., Sakellariadou M., “Unique factor ordering in the continuum limit of loop quantum cosmology”, Phys. Rev. D, 78 (2008), 024006, 6 pp. ; arXiv: 0806.0595 | DOI | MR
[61] Nelson W., Sakellariadou M., “Unstable anisotropic loop quantum cosmology”, Phys. Rev. D, 80 (2009), 063521, 9 pp. ; arXiv: 0907.4057 | DOI | MR
[62] Nelson W., Sakellariadou M., “Lattice refining loop quantum cosmology from an isotropic embedding of anisotropic cosmology”, Classical Quantum Gravity, 27 (2010), 145014, 16 pp. ; arXiv: 0906.0292 | DOI | MR | Zbl
[63] Noui K., Perez A., Vandersloot K., “On the physical Hilbert space of loop quantum cosmology”, Phys. Rev. D, 71 (2005), 044025, 14 pp. ; arXiv: gr-qc/0411039 | DOI | MR
[64] Rosen J., Jung J.-H., Khanna G., “Instabilities in numerical loop quantum cosmology”, Classical Quantum Gravity, 23 (2006), 7075–7084 ; arXiv: gr-qc/0607044 | DOI | MR | Zbl
[65] Sabharwal S., Khanna G., “Numerical solutions in lattice-refined models in loop quantum cosmology”, Classical Quantum Gravity, 25 (2008), 085009, 12 pp. ; arXiv: 0711.2086 | DOI | MR | Zbl
[66] Shimano M., Harada T., “Observational constraints on a power spectrum from superinflation in loop quantum cosmology”, Phys. Rev. D, 80 (2009), 063538, 11 pp. ; arXiv: 0909.0334 | DOI
[67] Singh P., “Loop cosmological dynamics and dualities with Randall–Sundrum braneworlds”, Phys. Rev. D, 73 (2006), 063508, 9 pp. ; arXiv: gr-qc/0603043 | DOI | MR
[68] Singh P., “Are loop quantum cosmologies never singular?”, Classical Quantum Gravity, 26 (2009), 125005, 17 pp., arXiv: ; Singh P., Vidotto F., “Exotic singularities and spatially curved loop quantum cosmology”, Phys. Rev. D, 83 (2011), 064027, 13 pp., arXiv: 0901.27501012.1307 | DOI | MR | Zbl | DOI
[69] Szulc L., “Open FRW model in loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 6191–6200 ; arXiv: 0709.4225 | DOI | MR | Zbl
[70] Szulc L., Kaminski W., Lewandowski J., “Friedmann–Robertson–Walker model in loop quantum cosmology”, Classical Quantum Gravity, 24 (2007), 2621–2635 ; arXiv: gr-qc/0612101 | DOI | MR | Zbl
[71] Szulc L., “Loop quantum cosmology of diagonal Bianchi type I model: simplifications and scaling problems”, Phys. Rev. D, 78 (2008), 064035, 12 pp. ; arXiv: 0803.3559 | DOI | MR
[72] Taveras V., “Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar field”, Phys. Rev. D, 78 (2008), 064072, 9 pp. ; arXiv: 0807.3325 | DOI | MR | Zbl
[73] Tsujikawa S., Singh P., Maartens R., “Loop quantum gravity effects on inflation and the CMB”, Classical Quantum Gravity, 21 (2004), 5767–5775 ; arXiv: astro-ph/0311015 | DOI | MR | Zbl
[74] Vandersloot K., “Loop quantum cosmology and the $k=-1$ Robertson–Walker model”, Phys. Rev. D, 75 (2007), 023523, 13 pp. ; arXiv: gr-qc/0612070 | DOI | MR | Zbl
[75] Wilson-Ewing E., “Loop quantum cosmology of Bianchi type IX models”, Phys. Rev. D, 82 (2010), 043508, 13 pp. ; arXiv: 1005.5565 | DOI