@article{SIGMA_2011_7_a99,
author = {Pavlos Kassotakis and Maciej Nieszporski},
title = {Families of {Integrable} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a99/}
}
Pavlos Kassotakis; Maciej Nieszporski. Families of Integrable Equations. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a99/
[1] Ritt J., “Permutable rational functions”, Trans. Amer. Math. Soc., 25 (1923), 399–448 | DOI | MR | Zbl
[2] Julia G., “Mémoire sur la permutabilité des fractions rationelles”, Ann. Sci. Ecole Norm. Sup. (3), 39 (1922), 131–152 | MR
[3] Fatou P., “Sur l'itération analytique et les substitutions pennutables”, J. Math. Pure Appl., 23 (1924), 1–49
[4] Zabusky N.J., Kruskal M.D., “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett., 15 (1965), 240–243 | DOI | Zbl
[5] Hirota R., “Nonlinear partial difference equation. I. A difference analogue of the Korteweg–de Vries equation”, J. Phys. Soc. Japan, 43 (1977), 1424–1433 | DOI | MR
[6] Ablowitz M.J., Ladik F.J., “A nonlinear difference scheme and inverse scattering”, Stud. Appl. Math., 55 (1976), 213–229 | MR | Zbl
[7] Nijhoff F.W., Quispel G.R.W., Capel H.W., “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97 (1983), 125–128 | DOI | MR
[8] Quispel G.R.W., Roberts J.A.G., Thompson C.J., “Integrable mappings and soliton equations”, Phys. Lett. A, 126 (1988), 419–421 | DOI | MR | Zbl
[9] Papageorgiou V.G., Nijhoff F.W., Capel H.W., “Integrable mappings and nonlinear integrable lattice equations”, Phys. Lett. A, 147 (1990), 106–114 | DOI | MR
[10] Nijhoff F.W., Papageorgiou V.G., Capel H.W., Quispel G.R.W., “The lattice Gel'fand–Dikii hierarchy”, Inverse Problems, 8 (1992), 597–621 | DOI | MR | Zbl
[11] Veselov A.P., “Integrable maps”, Russ. Math. Surv., 46:5 (1991), 1–51 | DOI | MR | Zbl
[12] Adler V.E., Bobenko A.I., Suris Yu.B., “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12 (2004), 967–1007 ; arXiv: math.QA/0307009 | MR | Zbl
[13] Papageorgiou V.G., Tongas A.G., Veselov A.P., “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47 (2006), 083502, 16 pp. | DOI | MR | Zbl
[14] Bobenko A.I., Suris Yu.B., Discrete differential geometry. Integrable structure, Graduate Studies in Mathematics, 98, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl
[15] Drinfeld V.G., “On some unsolved problems in quantum group theory”, Quantum Groups, Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1–8 | DOI | MR
[16] Veselov A.P., “Yang–Baxter maps and integrable dynamics”, Phys. Lett. A, 314 (2003), 214–221 ; arXiv: math.QA/0205335 | DOI | MR | Zbl
[17] Papageorgiou V.G., Suris Yu.B., Tongas A.G., Veselov A.P., “On quadrirational Yang–Baxter maps”, SIGMA, 6 (2010), 033, 9 pp. ; arXiv: 0911.2895 | DOI | MR | Zbl
[18] Kassotakis P., Nieszporski M., On non-multiaffine consistent around the cube lattice equations, arXiv: 1106.0636
[19] Nijhoff F.W., Ramani A., Grammaticos B., Ohta Y., “On discrete Painlevé equations associated with the lattice KdV systems and the Painlevé VI equation”, Stud. Appl. Math., 106 (2001), 261–314 ; arXiv: solv-int/9812011 | DOI | MR | Zbl
[20] Nijhoff F.W., “On some “Schwarzian” equations and their discrete analogues”, Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman, Progr. Nonlinear Differential Equations Appl, 26, eds. A.S. Fokas and I.M. Gel'fand, Birkhäuser Boston, Boston, MA, 1997, 237–260 | MR | Zbl
[21] Nijhoff F.W., “Discrete Painlevé equations and symmetry reduction on the lattice”, Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., 16, eds. A.I. Bobenko and R. Seiler, Oxford Univ. Press, New York, 1999, 209–234 | MR | Zbl
[22] Nijhoff F.W., A higher-rank version of the Q3 equation, arXiv: 1104.1166
[23] Nijhoff F.W., Walker A.J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasgow Math. J., 43A (2001), 109–123 ; arXiv: nlin.SI/0001054 | DOI | MR | Zbl
[24] Nijhoff F.W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58 ; arXiv: nlin.SI/0110027 | DOI | MR | Zbl
[25] Adler V.E., Bobenko A.I., Suris Yu.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543 ; arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[26] Boll R., Classification of 3D consistent quad-equations, arXiv: 1009.4007
[27] Hirota R., “Nonlinear partial difference equations. III. Discrete sine-Gordon equation”, J. Phys. Soc. Japan, 43 (1977), 2079–2086 | DOI | MR
[28] Nijhoff F., Capel H., “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl
[29] Faddeev L., Volkov A.Yu., “Hirota equation as an example of an integrable symplectic map”, Lett. Math. Phys., 32 (1994), 125–135 ; arXiv: hep-th/9405087 | DOI | MR | Zbl
[30] Bobenko A., Pinkall U., “Discrete surfaces with constant negative Gaussian curvature and the Hirota equation”, J. Differential Geom., 43 (1996), 527–611 | MR | Zbl
[31] Zabrodin A., Tau-function for discrete sine-Gordon equation and quantum $R$-matrix, arXiv: solv-int/9810003
[32] Grammaticos B., Ramani A., Scimiterna C., Willox R., “Miura transformations and the various guises of integrable lattice equations”, J. Phys. A: Math. Theor., 44 (2011), 152004, 9 pp. | DOI | MR | Zbl
[33] Hietarinta J., Viallet C., “Integrable lattice equations with vertex and bond variables”, J. Phys. A: Math. Theor., 44 (2011), 385201, 13 pp. ; arXiv: 1105.4996 | DOI | MR | Zbl