Mots-clés : matrix orthogonal polynomials
@article{SIGMA_2011_7_a97,
author = {F. Alberto Gr\"unbaum and Manuel D. de la Iglesia and Andrei Mart{\'\i}nez-Finkelshtein},
title = {Properties of {Matrix} {Orthogonal} {Polynomials} via their {Riemann{\textendash}Hilbert} {Characterization}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a97/}
}
TY - JOUR AU - F. Alberto Grünbaum AU - Manuel D. de la Iglesia AU - Andrei Martínez-Finkelshtein TI - Properties of Matrix Orthogonal Polynomials via their Riemann–Hilbert Characterization JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a97/ LA - en ID - SIGMA_2011_7_a97 ER -
%0 Journal Article %A F. Alberto Grünbaum %A Manuel D. de la Iglesia %A Andrei Martínez-Finkelshtein %T Properties of Matrix Orthogonal Polynomials via their Riemann–Hilbert Characterization %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a97/ %G en %F SIGMA_2011_7_a97
F. Alberto Grünbaum; Manuel D. de la Iglesia; Andrei Martínez-Finkelshtein. Properties of Matrix Orthogonal Polynomials via their Riemann–Hilbert Characterization. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a97/
[1] Álvarez-Fernández C., Fidalgo U., Mañas M., “The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems”, Inverse Problems, 26 (2010), 055009, 15 pp. ; arXiv: 0911.0941 | DOI | MR | Zbl
[2] Berezans'kiĭ Ju.M., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, American Mathematical Society, Providence, R.I., 1968 | MR
[3] Borrego J., Castro M.M., Durán A.J., Orthogonal matrix polynomials satisfying differential equations with recurrence coefficients having non-scalar limits, arXiv: 1102.1578
[4] Cassatella-Contra G.A., Mañas M., “Riemann–Hilbert problems, matrix orthogonal polynomials and discrete matrix equations with singularity confinement”, Stud. Appl. Math. (to appear)
[5] Castro M.M., Grünbaum F.A., “Orthogonal matrix polynomials satisfying first order differential equations: a collection of instructive examples”, J. Nonlinear Math. Phys., 12:2 (2005), 63–76 | DOI | MR | Zbl
[6] Castro M.M., Grünbaum F.A., “The non-commutative bispectral problem for operators of order one”, Constr. Approx., 27 (2008), 329–347 | DOI | MR | Zbl
[7] Chen Y., Ismail M.E.H., “Ladder operators and differential equations for orthogonal polynomials”, J. Phys. A: Math. Gen., 30 (1997), 7817–7829 | DOI | MR | Zbl
[8] Daems E., Kuijlaars A.B.J., “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146 (2007), 91–114 ; arXiv: math.CA/0511470 | DOI | MR | Zbl
[9] Daems E., Kuijlaars A.B.J., Veys W., “Asymptotics of non-intersecting Brownian motions and a $4\times4$ Riemann–Hilbert problem”, J. Approx. Theory, 153 (2008), 225–256 ; arXiv: math.CV/0701923 | DOI | MR | Zbl
[10] Dai D., Kuijlaars A.B.J., “Painlevé IV asymptotics for orthogonal polynomials with respect to a modified Laguerre weight”, Stud. Appl. Math., 122 (2009), 29–83 ; arXiv: 0804.2564 | DOI | MR | Zbl
[11] Damanik D., Pushnitski A., Simon B., “The analytic theory of matrix orthogonal polynomials”, Surv. Approx. Theory, 4 (2008), 1–85 ; arXiv: 0711.2703 | MR | Zbl
[12] Deift P.A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University Courant Institute of Mathematical Sciences, New York, 1999 | MR
[13] Deift P.A., “Riemann–Hilbert methods in the theory of orthogonal polynomials”, Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon's 60th Birthday, Proc. Sympos. Pure Math., 76, Amer. Math. Soc., Providence, RI, 2007, 715–740 ; arXiv: math.CA/0603309 | MR | Zbl
[14] Deift P.A., Gioev D., Random matrix theory: invariant ensembles and universality, Courant Lecture Notes in Mathematics, 18, Courant Institute of Mathematical Sciences, New York, 2009 | MR | Zbl
[15] Deift P.A., Kamvissis S., Kriecherbauer Th., Zhou X., “The Toda rarefaction problem”, Comm. Pure Appl. Math., 49 (1996), 35–83 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[16] Deift P.A., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137 (1993), 295–368 ; arXiv: math.AP/9201261 | DOI | MR | Zbl
[17] Deift P.A., Zhou X., “Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space”, Comm. Pure Appl. Math., 56 (2003), 1029–1077 ; arXiv: math.AP/0206222 | DOI | MR | Zbl
[18] Delvaux S., “Average characteristic polynomials for multiple orthogonal polynomial ensembles”, J. Approx. Theory, 162 (2010), 1033–1067 ; arXiv: 0907.0156 | DOI | MR | Zbl
[19] Delvaux S., Kuijlaars A.B.J., “A phase transition for nonintersecting Brownian motions, and the Painlevé equation”, Int. Math. Res. Not., 2009:19 (2009), 3639–3725 ; arXiv: 0809.1000 | DOI | MR | Zbl
[20] Durán A.J., “Markov's theorem for orthogonal matrix polynomials”, Canad. J. Math., 48 (1996), 1180–1195 | DOI | MR | Zbl
[21] Durán A.J., “Matrix inner product having a matrix symmetric second order differential operator”, Rocky Mountain J. Math., 27 (1997), 585–600 | DOI | MR | Zbl
[22] Durán A.J., “Generating orthogonal matrix polynomials satisfying second order differential equations from a trio of triangular matrices”, J. Approx. Theory, 161 (2009), 88–113 | DOI | MR | Zbl
[23] Durán A.J., Grünbaum F.A., “Orthogonal matrix polynomials satisfying second-order differential equations”, Int. Math. Res. Not., 2004:10 (2004), 461–484 | DOI | MR | Zbl
[24] Durán A.J., Grünbaum F.A., “A characterization for a class of weight matrices with orthogonal matrix polynomials satisfying second-order differential equations”, Int. Math. Res. Not., 2005:23 (2005), 1371–1390 | DOI | Zbl
[25] Durán A.J., Ismail M.E.H., “Differential coefficients of orthogonal matrix polynomials”, J. Comput. Appl. Math., 190 (2006), 424–436 | DOI | MR | Zbl
[26] Durán A.J., Van Assche W., “Orthogonal matrix polynomials and higher-order recurrence relations”, Linear Algebra Appl., 219 (1995), 261–280 ; arXiv: math.CA/9310220 | DOI | MR | Zbl
[27] Flaschka H., “The Toda lattice. II. Existence of integrals”, Phys. Rev. B, 9 (1974), 1924–1925 | DOI | MR | Zbl
[28] Fokas A.S., Its A.R., Kitaev A.V., “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl
[29] Grünbaum F.A., “Matrix valued Jacobi polynomials”, Bull. Sci. Math., 127 (2003), 207–214 | DOI | MR
[30] Grünbaum F.A., “Random walks and orthogonal polynomials: some challenges”, Probability, Geometry and Integrable Systems, Math. Sci. Res. Inst. Publ., 55, Cambridge Univ. Press, Cambridge, 2008, 241–260 | MR
[31] Grünbaum F.A., “Block tridiagonal matrices and a beefed-up version of the Ehrenfest urn model”, Modern Analysis and Applications. The Mark Krein Centenary Conference, v. 1, Oper. Theory Adv. Appl., 100, Operator Theory and Related Topics, Birkhäuser Verlag, Basel, 2009, 267–277 | DOI | MR
[32] Grünbaum F.A., “A spectral weight matrix for a discrete version of Walsh's spider”, Topics in Operator Theory, v. 1, Oper. Theory Adv. Appl., 202, Operators, Matrices and Analytic Functions, Birkhäuser Verlag, Basel, 2010, 253–264 | DOI | MR
[33] Grünbaum F.A., de la Iglesia M.D., “Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes”, SIAM J. Matrix Anal. Appl., 30 (2008), 741–761 | DOI | MR
[34] Grünbaum F.A., Pacharoni I., Tirao J., “Matrix valued spherical functions associated to the complex projective plane”, J. Funct. Anal., 188 (2002), 350–441 ; arXiv: math.RT/0108042 | DOI | MR | Zbl
[35] Grünbaum F.A., Pacharoni I., Tirao J., “Matrix valued orthogonal polynomials of the Jacobi type”, Indag. Math. (N.S.), 14 (2003), 353–366 | DOI | MR
[36] Grünbaum F.A., Pacharoni I., Tirao J., “An invitation to matrix-valued spherical functions: linearization of products in the case of complex projective space $P_2(\mathbb C)$”, Modern Signal Processing, Math. Sci. Res. Inst. Publ., 46, Cambridge Univ. Press, Cambridge, 2004, 147–160 ; arXiv: math.RT/0202304 | MR | Zbl
[37] Grünbaum F.A., Pacharoni I., Tirao J., Two stochastic models of a random walk in the $U(n)$ spherical duals of $U(n+1)$, arXiv: 1010.0720 | Zbl
[38] Grünbaum F.A., Tirao J., “The algebra of differential operators associate to a weight matrix”, Integr. Equ. Oper. Theory, 58 (2007), 449–475 | DOI | MR
[39] Hille E., Ordinary differential equations in the complex domain, Pure and Applied Mathematics, Wiley-Interscience, New York, 1976 | MR | Zbl
[40] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[41] Its A.R., Kuijlaars A.B.J., Östensson J., “Asymptotics for a special solution of the thirty fourth Painlevé equation”, Nonlinearity, 22 (2009), 1523–1558 ; arXiv: 0811.3847 | DOI | MR | Zbl
[42] Kreĭn M.G., “Infinite $J$-matrices and a matrix-moment problem”, Doklady Akad. Nauk SSSR (N.S.), 69 (1949), 125–128 (Russian) | MR | Zbl
[43] Kreĭn M.G., “Fundamental aspects of the representation theory of Hermitian operators with deficiency index $(m,m)$”, Am. Math. Soc. Translat. Ser. 2, 97 (1971), 75–143
[44] Kuijlaars A.B.J., Martínez-Finkelshtein A., Wielonsky F., “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286 (2009), 217–275 ; arXiv: 1011.1278 | DOI | MR | Zbl
[45] Kuijlaars A.B.J., “Multiple orthogonal polynomial ensembles”, Recent Trends in Orthogonal Polynomials and Approximation Theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 155–176 ; arXiv: 0902.1058 | MR | Zbl
[46] McLaughlin K.T.-R., Vartanian A.H., Zhou X., “Asymptotics of Laurent polynomials of even degree orthogonal with respect to varying exponential weights”, IMRP Int. Math. Res. Pap., 2006 (2006), Art. ID 62815, 216 pp. ; arXiv: math.CA/0601306 | DOI | MR
[47] McLaughlin K.T.-R., Vartanian A.H., Zhou X., “Asymptotics of Laurent polynomials of odd degree orthogonal with respect to varying exponential weights”, Constr. Approx., 27 (2008), 149–202 ; arXiv: math.CA/0601595 | DOI | MR | Zbl
[48] Miranian L., “Matrix-valued orthogonal polynomials on the real line: some extensions of the classical theory”, J. Phys. A: Math. Gen., 38 (2005), 5731–5749 | DOI | MR | Zbl
[49] Sibuya Y., Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs, 82, American Mathematical Society, Providence, RI, 1990 | MR | Zbl
[50] Simon B., Orthogonal polynomials on the unit circle I and II, AMS Colloquium Publications, 54, American Mathematical Society, Providence, RI, 2005 | Zbl
[51] Simon B., Szegő's theorem and its descendants: spectral theory for $L^2$ perturbations of orthogonal polynomials, Princeton University Press, 2010 | Zbl
[52] Van Assche W., “Discrete Painlevé equations for recurrence coefficients of orthogonal polynomials”, Difference Equations, Special Functions and Orthogonal Polynomials, World Sci. Publ., Hackensack, NJ, 2007, 687–725 ; arXiv: math.CA/0512358 | MR | Zbl