Mots-clés : spectral decompositions
@article{SIGMA_2011_7_a95,
author = {Vladimir S. Gerdjikov and Georgi G. Grahovski and Alexander V. Mikhailov and Tihomir I. Valchev},
title = {Polynomial {Bundles} and {Generalised} {Fourier} {Transforms} for {Integrable} {Equations} on {A.III-type} {Symmetric} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a95/}
}
TY - JOUR AU - Vladimir S. Gerdjikov AU - Georgi G. Grahovski AU - Alexander V. Mikhailov AU - Tihomir I. Valchev TI - Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a95/ LA - en ID - SIGMA_2011_7_a95 ER -
%0 Journal Article %A Vladimir S. Gerdjikov %A Georgi G. Grahovski %A Alexander V. Mikhailov %A Tihomir I. Valchev %T Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a95/ %G en %F SIGMA_2011_7_a95
Vladimir S. Gerdjikov; Georgi G. Grahovski; Alexander V. Mikhailov; Tihomir I. Valchev. Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a95/
[1] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., “The inverse scattering transform – Fourier analysis for nonlinear problems”, Studies in Appl. Math., 53 (1974), 249–315 | MR | Zbl
[2] Adler V.E., Shabat A.B., Yamilov R.I., “The symmetry approach to the problem of integrability”, Theoret. and Math. Phys., 125 (2000), 1603–1661 | DOI | MR | Zbl
[3] Athorne C., Fordy A., “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20 (1987), 1377–1386 | DOI | MR | Zbl
[4] Borissov A.B., Kisselev V.V., Nonlinear waves, solitons and localised structures in magnets, v. 1, Quasi-homogeneous magnetic solitons, Inst. Metal Physics, Ural Branch of RAS, Ekaterininburg, 2009 (Russian)
[5] Calogero F., Degasperis A., “Nonlinear evolution equations solvable by the inverse spectral transform. I”, Nuovo Cimento B, 32 (1976), 201–242 | DOI | MR
[6] Calogero F., Degasperis A., “Nonlinear evolution equations solvable by the inverse spectral transform. II”, Nuovo Cimento B, 39 (1976), 1–54 | DOI | MR
[7] Drinfel'd V.G., Sokolov V.V., “Lie algebras and equations of Korteweg–de Vries type”, J. Math. Sci., 30 (1985), 1975–2036 | DOI | MR
[8] Fordy A.P., “Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 17 (1984), 1235–1245 | DOI | MR | Zbl
[9] Fordy A.P., Kulish P.P., “Nonlinear Schrödinger equations and simple Lie algebras”, Comm. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl
[10] Gel'fand I.M., Dickey L.A., “Asymptotic behaviour of the resolvent of Sturm–Liouville equations and the algebra of the Korteweg–de Vries equations”, Russ. Math. Surv., 30:5 (1975), 77–113 ; Gel'fand I.M., Dickey L.A., “A Lie algebra structure in a formal variational calculation”, Funct. Anal. Appl., 10:1 (1976), 16–22 | DOI | MR | Zbl | DOI
[11] Gerdjikov V.S., “Generalised Fourier transforms for the soliton equations. Gauge-covariant formulation”, Inverse Problems, 2 (1986), 51–74 | DOI | MR | Zbl
[12] Gerdjikov V.S., “The generalized Zakharov–Shabat system and the soliton perturbations”, Theoret. and Math. Phys., 99 (1994), 593–598 | DOI | MR | Zbl
[13] Gerdjikov V.S., Grahovski G.G., Kostov N.A., “Reductions of $N$-wave interactions related to simple Lie algebras. I. ${\mathbf Z}_2$-reductions”, J. Phys. A: Math. and Gen., 34 (2001), 9425–9461 ; arXiv: ; Gerdjikov V.S., Grahovski G.G., Ivanov R.I., Kostov N.A., “$N$-wave interactions related to simple Lie algebras. $\mathbf Z_2$-reductions and soliton solutions”, Inverse Problems, 17 (2001), 999–1015 ; arXiv: nlin.SI/0006001nlin.SI/0009034 | DOI | MR | Zbl | DOI | MR | Zbl
[14] Gerdjikov V.S., Grahovski G.G., Mikhailov A.V., Valchev T.I., “Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces”, Theoret. and Math. Phys. (to appear)
[15] Gerdjikov V.S., Khristov E.Kh., “On the evolution equations solvable with the inverse scattering problem. II. Hamiltonian structures and Bäcklund transformations”, Bulgar. J. Phys., 7 (1980), 119–133 (Russian) | MR
[16] Gerdjikov V.S., Ivanov M.I., “The quadratic bundle of general form and the nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulgar. J. Phys., 10 (1983), 130–143 (Russian) | MR
[17] Gerdjikov V.S., Kulish P.P., “The generating operator for the $n\times n$ linear system”, Phys. D, 3 (1981), 549–564 | DOI | MR | Zbl
[18] Gerdjikov V.S., Mikhailov A.V., Valchev T.I., “Reductions of integrable equations on A.III-type symmetric spaces”, J. Phys. A: Math Theor., 43 (2010), 434015, 13 pp., arXiv: 1004.4182 | DOI | MR | Zbl
[19] Gerdjikov V.S., Mikhailov A.V., Valchev T.I., “Recursion operators and reductions of integrable equations on symmetric spaces”, J. Geom. Symmetry Phys., 20 (2010), 1–34 | MR | Zbl
[20] Gerdjikov V.S., Vilasi G., Yanovski A.B., “Integrable Hamiltonian hierarchies. Spectral and geometric methods”, Lecture Notes in Physics, 748, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl
[21] Golubchik I.Z., Sokolov V.V., “Integrable equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 112 (1997), 1097–1103 | DOI | MR | Zbl
[22] Golubchik I.Z., Sokolov V.V., “Generalised Heisenberg equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 120 (1999), 1019–1025 | DOI | MR | Zbl
[23] Golubchik I.Z., Sokolov V.V., “Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation”, Theoret. and Math. Phys., 124 (2000), 909–917 | DOI | MR | Zbl
[24] Gürses M., Karasu A., Sokolov V.V., “On construction of recursion operators from Lax representation”, J. Math. Phys., 40 (1999), 6473–6490 ; arXiv: solv-int/9909003 | DOI | MR | Zbl
[25] Helgasson S., Differential geometry, Lie groups and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York – London, 1978 | MR
[26] Ibragimov N.Kh., Shabat A.B., “Infinite Lie–Bäcklund algebras”, Funct. Anal. Appl., 14 (1980), 313–315 | DOI | MR
[27] Kaup D.J., Newell A.C., “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19 (1978), 798–801 | DOI | MR | Zbl
[28] Lombardo S., Mikhailov A.V., “Reductions of integrable equations: dihedral group”, J. Phys. A: Math. Gen., 37 (2004), 7727–7742 ; arXiv: nlin.SI/0404013 | DOI | MR | Zbl
[29] Lombardo S., Mikhailov A.V., “Reduction groups and automorphic Lie algebras”, Comm. Math. Phys., 258 (2005), 179–202, arXiv: math-ph/0407048 | DOI | MR | Zbl
[30] Lombardo S., Sanders J.A., “On the classification of automorphic Lie algebras”, Comm. Math. Phys., 299 (2010), 793–824 ; arXiv: 0912.1697 | DOI | MR | Zbl
[31] Loos O., Symmetric spaces. I: General theory; II: Compact spaces and classification, W.A. Benjamin, Inc., New York – Amsterdam, 1969 | MR | Zbl
[32] Mikhailov A.V., “On the integrability of two-dimensional generalization of the Toda lattice”, Lett. J. Exper. and Theor. Phys., 30 (1979), 443–448
[33] Mikhailov A.V., “Reduction in integrable systems. The reduction group”, Lett. J. Exper. and Theor. Phys., 32 (1980), 187–192
[34] Mikhailov A.V., “The reduction problem and the inverse scattering method”, Phys. D, 3 (1981), 73–117 | DOI | Zbl
[35] Mikhailov A.V., “The Landau–Lifschitz equation and the Riemann boundary problem on a torus”, Phys. Lett. A, 92 (1982), 51–55 | DOI | MR
[36] Mikhailov A.V., Olshanetski M.A., Perelomov A.M., “Two-dimensional generalized Toda lattice”, Comm. Math. Phys., 79 (1981), 473–488 | DOI | MR
[37] Mikhailov A.V., Sokolov V.V., “Symmetries of differential equations and the problem of integrability”, Integrability, Lecture Notes in Physics, 767, ed. A.V. Mikhailov, Springer-Verlag, Berlin, 2009, 19–88 | DOI | Zbl
[38] Mikhailov A.V., Sokolov V.V., Shabat A.B., “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer Ser. Nonlinear Dynam., ed. V.E. Zakharov, Springer-Verlag, Berlin, 1991, 115–184 | MR | Zbl
[39] Mikhailov A.V., Shabat A.B., Yamilov R.I., “The symmetry approach to the classification of nonlinear equations. Complete lists of integrable systems”, Russ. Math. Surv., 42:4 (1987), 1–63 | DOI | MR
[40] Novikov S., Manakov S.V., Pitaevskii L.P., Zakharov V.E., Theory of solitons. The inverse scattering method, Plenum, New York, 1984 | MR | Zbl
[41] Olver P.J., “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18 (1977), 1212–1215 | DOI | MR | Zbl
[42] Sokolov V.V., Shabat A.B., “Classification of integrable evolution equations”, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 4, Harwood Academic Publ., Chur, 1984, 221–280 | MR
[43] Svinolupov S.I., Sokolov V.V., “Evolution equations with nontrivial conservation laws”, Funct. Anal. Appl., 16 (1982), 317–319 | DOI | MR
[44] Svinolupov S.I., Sokolov V.V., “On conservation laws for equations with nontrivial Lie–Bäcklund algebra”, Integrable Systems, ed. A.B. Shabat, BFAN SSSR, Ufa, 1982, 53–67 (in Russian)
[45] Takhtadjan L., Faddeev L., The Hamiltonian approach to soliton theory, Springer-Verlag, Berlin, 1986
[46] Wang J.P., “Lenard scheme for two-dimensional periodic Volterra chain”, J. Math. Phys., 50 (2009), 023506, 25 pp., arXiv: 0809.3899 | DOI | MR | Zbl
[47] Wu D., Ma H., Twisted hierarchies associated with the generalized sine-Gordon equation, arXiv: 1103.6077
[48] Zakharov V.E., Manakov S.V., Exact theory of resonant interaction of wave packets in nonlinear media, INF preprint 74–41, Novosibirsk, 1974, 52 pp. (Russian) ; Zakharov V.E., Manakov S.V., “On the theory of resonant interaction of wave packets in nonlinear media”, Soviet Physics JETP, 42 (1975), 842–850 ; Zakharov V.E., Manakov S.V., “Asymptotic behavior of nonlinear wave systems integrable by the inverse scattering method”, Soviet Physics JETP, 44 (1976), 106–112 (Russian) | MR | MR
[49] Zakharov V.E., Shabat A.B., “A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering transform. I”, Funct. Anal. Appl., 8 (1974), 226–235 ; Zakharov V.E., Shabat A.B., “Integration of nonlinear equations of mathematical physics by the method of the inverse scattering transform. II”, Funct. Anal. Appl., 13 (1979), 166–174 | DOI | Zbl | DOI | MR
[50] Zakharov V.E., Mikhailov A.V., “On the integrability of classical spinor models in two-dimensional space-time”, Comm. Math. Phys., 74 (1980), 21–40 | DOI | MR
[51] Zakharov V.E., Mikhailov A.V., “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Soviet Physics JETP, 47 (1978), 1017–1027 | MR