@article{SIGMA_2011_7_a94,
author = {Antoni Sym and Adam Szereszewski},
title = {On {Darboux's} {Approach} to $R${-Separability} of {Variables}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a94/}
}
Antoni Sym; Adam Szereszewski. On Darboux's Approach to $R$-Separability of Variables. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a94/
[1] Bianchi L., Lezioni di Geometria Differenziale, v. 2, part 2, 3rd ed., Zanichelli, Bologna, 1924 | Zbl
[2] Bôcher M., Ueber die Reihenentwickelungen der Potentialtheorie, Teubner, Leipzig, 1894
[3] Boyer C.P., Kalnins E.G., Miller W. Jr., “Symmetry and separation of variables for the Helmholtz and Laplace equations”, Nagoya Math. J., 60 (1976), 35–80 | MR | Zbl
[4] Burstall F.E., “Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems,”, Integrable Systems, Geometry and Topology, AMS/IP Studies in Advanced Math., 36, ed. C.-L. Terng, Amer. Math. Soc., Providence, RI, 2006, 1–82 ; arXiv: math.DG/0003096 | MR | Zbl
[5] Cartan É., Les systèmes differentials extérieurs et leur applications géométriques, Actualites Sci. Ind., 994, Hermann et Cie., Paris, 1945 | MR
[6] Cecil T.E., Lie sphere geometry. With applications to submanifolds, Universitext, 2nd ed., Springer, New York, 2008 | MR
[7] Chanu C., Rastelli G., “Fixed energy $R$-separation for Schrödinger equation”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 489–508 ; arXiv: nlin.SI/0512033 | DOI | MR | Zbl
[8] Cieśliński J., Goldstein P., Sym A., “Isothermic surfaces in $\mathbb E^3$ as soliton surfaces”, Phys. Lett. A, 205 (1995), 37–43 ; arXiv: solv-int/9502004 | DOI | MR | Zbl
[9] Darboux G., “Sur l'application des methods de la Physique mathématique à l'étude des corps terminés par des cyclides”, Comptes Rendus, 83 (1876), 1037–1040
[10] Darboux G., “Sur une classe de systèmes orthogonaux, comprenant comme cas particulier les systèmes isothermes”, Comptes Rendus, 84 (1877), 298–301
[11] Darboux G., “Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux”, Ann. de l'Éc. N. (2), 7 (1878), 101–150, 227–260, 275–348 | MR | Zbl
[12] Darboux G., “Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux”, Ann. de l'Éc. N. (2), 7 (1878), 275–348 | MR | Zbl
[13] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910 | Zbl
[14] Darboux G., Leçons sur la théorie générale des surfaces, v. 2, Gauthier–Villars, Paris, 1915 | Zbl
[15] Deturck D.M., Yang D., “Existence of elastic deformations with prescribed principal strains and triply orthogonal systems”, Duke Math. J., 51 (1984), 243–260 | DOI | MR | Zbl
[16] Eisenhart L.P., “Separable systems of Stäckel”, Ann. of Math. (2), 35 (1934), 284–305 | DOI | MR
[17] Fedoryuk M.V., “Multidimensional Lamé wave functions”, Math. Notes, 46 (1989), 804–811 | DOI | MR | Zbl
[18] Gray A., Abbena E., Salamon S., Modern differential geometry of curves and surfaces with Mathematica, Studies in Advanced Mathematics, 3rd ed., Chapman Hall/CRC, Boca Raton, FL, 2006 | MR
[19] Hertrich-Jeromin U., Introduction to Möbius differential geometry, London Mathematical Society Lecture Note Series, 300, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[20] Jacobi C.G.J., Vorlesungen über Dynamik, Reimer, Berlin, 1866 | Zbl
[21] Kalnins E.G., Miller W. Jr., “Some remarkable $R$-separable coordinate systems for the Helmholtz equation”, Lett. Math. Phys., 4 (1980), 469–474 | DOI | MR | Zbl
[22] Kalnins E.G., Miller W. Jr., “Jacobi elliptic coordinates, functions of Heun and Lamé type and the Niven transform”, Regul. Chaotic Dyn., 10 (2005), 487–508 | DOI | MR | Zbl
[23] Miller W. Jr., “The technique of variable separation for partial differential equations”, Nonlinear Phenomena (Oaxtepec, 1982), Lecture Notes in Phys., 189, Springer, Berlin, 1983, 184–208 | DOI | MR
[24] Moon P., Spencer D.E., Field theory handbook. Including coordinate systems, differential equations and their solutions, 2nd ed., Springer-Verlag, Berlin, 1988 | MR
[25] Pavlov M.V., “Integrable hydrodynamic chains”, J. Math. Phys., 44 (2003), 4143–4156 ; arXiv: nlin.SI/0301010 | DOI | MR
[26] Prus R., Sym A., “Non-regular and non-Stäckel $R$-separation for 3-dimensional Helmholtz equation and cyclidic solitons of wave equation”, Phys. Lett. A, 336 (2005), 459–462 | DOI | MR | Zbl
[27] Robertson H.P., “Bemerkung über separierbare Systeme in der Wellenmechanik”, Math. Ann., 98 (1928), 749–752 | DOI | MR | Zbl
[28] Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | DOI | MR
[29] Takeuchi N., “Cyclides”, Hokkaido Math. J., 29 (2000), 119–148 | MR | Zbl
[30] Tod K.P., “On choosing coordinates to diagonalize the metric”, Classical Quantum Gravity, 9 (1992), 1693–1705 | DOI | MR | Zbl
[31] Tsarev S.P., “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Sov. Math. Dokl., 31 (1985), 488–491 | MR | Zbl
[32] Tsarev S.P., “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR. Izv., 37 (1991), 397–419 | DOI | MR
[33] Ushveridze A.G., “Special case of the separation of variables in the multidimensional Schrödinger equation”, J. Phys. A: Math. Gen., 21 (1988), 1601–1605 | DOI | MR | Zbl
[34] Vassiliou P.J., “Method for solving the multidimensional $n$-wave resonant equations and geometry of generalized Darboux–Manakov–Zakharov systems”, Stud. Appl. Math., 126 (2011), 203–243 | DOI | MR | Zbl