Four-Dimensional Spin Foam Perturbation Theory
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a four-dimensional spin-foam perturbation theory for the ${\rm BF}$-theory with a $B\wedge B$ potential term defined for a compact semi-simple Lie group $G$ on a compact orientable 4-manifold $M$. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. We then regularize the terms in the perturbative series by passing to the category of representations of the quantum group $U_q (\mathfrak{g})$ where $\mathfrak{g}$ is the Lie algebra of $G$ and $q$ is a root of unity. The Chain–Mail formalism can be used to calculate the perturbative terms when the vector space of intertwiners $\Lambda\otimes \Lambda \to A$, where $A$ is the adjoint representation of $\mathfrak{g}$, is 1-dimensional for each irrep $\Lambda$. We calculate the partition function $Z$ in the dilute-gas limit for a special class of triangulations of restricted local complexity, which we conjecture to exist on any 4-manifold $M$. We prove that the first-order perturbative contribution vanishes for finite triangulations, so that we define a dilute-gas limit by using the second-order contribution. We show that $Z$ is an analytic continuation of the Crane–Yetter partition function. Furthermore, we relate $Z$ to the partition function for the $F\wedge F$ theory.
Keywords: spin foam models; BF-theory; spin networks; dilute-gas limit; Crane–Yetter invariant; spin-foam perturbation theory.
@article{SIGMA_2011_7_a93,
     author = {Jo\~ao Faria Martins and Aleksandar Mikovi\'c},
     title = {Four-Dimensional {Spin} {Foam} {Perturbation} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a93/}
}
TY  - JOUR
AU  - João Faria Martins
AU  - Aleksandar Miković
TI  - Four-Dimensional Spin Foam Perturbation Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a93/
LA  - en
ID  - SIGMA_2011_7_a93
ER  - 
%0 Journal Article
%A João Faria Martins
%A Aleksandar Miković
%T Four-Dimensional Spin Foam Perturbation Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a93/
%G en
%F SIGMA_2011_7_a93
João Faria Martins; Aleksandar Miković. Four-Dimensional Spin Foam Perturbation Theory. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a93/

[1] Baez J., “An introduction to spin foam models of quantum gravity and BF theory”, Geometry and Quantum Physics (Schladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93 ; arXiv: gr-qc/9905087 | DOI | MR

[2] Baez J., “Spin foam perturbation theory”, Diagrammatic Morphisms and Applications (San Francisco, CA, 2000), Contemp. Math., 318, Amer. Math. Soc., Providence, RI, 2003, 9–21 ; arXiv: gr-qc/9910050 | MR | Zbl

[3] Barrett J.W., Faria Martins J., García-Islas J.M., “Observables in the Turaev–Viro and Crane–Yetter models”, J. Math. Phys., 48 (2007), 093508, 18 pp. ; arXiv: math.QA/0411281 | DOI | MR | Zbl

[4] Broda B., Surgical invariants of four-manifolds, arXiv: hep-th/9302092

[5] Cooper D., Thurston W., “Triangulating $3$-manifolds using $5$ vertex link types”, Topology, 27 (1988), 23–25 | DOI | MR | Zbl

[6] Crane L., Yetter D.A., “A categorical construction of $4$D topological quantum field theories”, Quantum Topology, Ser. Knots Everything, 3, World Sci. Publ., River Edge, NJ, 1993, 120–130 ; arXiv: hep-th/9301062 | DOI | MR | Zbl

[7] Eguchi T., Gilkey P.B., Hanson A.J., “Gravitation, gauge theories and differential geometry”, Phys. Rep., 66 (1980), 213–393 | DOI | MR

[8] Faria Martins J., Miković A., “Invariants of spin networks embedded in three-manifolds”, Comm. Math. Phys., 279 (2008), 381–399 ; arXiv: gr-qc/0612137 | DOI | MR | Zbl

[9] Faria Martins J., Miković A., “Spin foam perturbation theory for three-dimensional quantum gravity”, Comm. Math. Phys., 288 (2009), 745–772 ; arXiv: 0804.2811 | DOI | MR | Zbl

[10] Freidel L., Krasnov K., “Spin foam models and the classical action principle”, Adv. Theor. Math. Phys., 2 (1999), 1183–1247 ; arXiv: hep-th/9807092 | MR | MR

[11] Freidel L., Starodubtsev A., Quantum gravity in terms of topological observables, arXiv: hep-th/0501191

[12] Gompf R.E., Stipsicz A.I., $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999 | MR | Zbl

[13] Kauffman L.H., Lins S.L., Temperley–Lieb recoupling theory and invariants of 3-manifolds, Annals of Mathematics Studies, 134, Princeton University Press, Princeton, NJ, 1994 | MR | Zbl

[14] Kirby R.C., The topology of $4$-manifolds, Lecture Notes in Mathematics, 1374, Springer-Verlag, Berlin, 1989 | MR | Zbl

[15] Lickorish W.B.R., “The skein method for three-manifold invariants”, J. Knot Theory Ramifications, 2 (1993), 171–194 | DOI | MR | Zbl

[16] Mackaay M., “Spherical $2$-categories and $4$-manifold invariants”, Adv. Math., 143 (1999), 288–348 ; arXiv: math.QA/9805030 | DOI | MR | Zbl

[17] Mackaay M., “Finite groups, spherical 2-categories, and 4-manifold invariants”, Adv. Math., 153 (2000), 353–390 ; arXiv: math.QA/9903003 | DOI | MR | Zbl

[18] Miković A., “Spin foam models of Yang–Mills theory coupled to gravity”, Classical Quantum Gravity, 20 (2003), 239–246 ; arXiv: gr-qc/0210051 | DOI | MR | Zbl

[19] Miković A., “Quantum gravity as a deformed topological quantum field theory”, J. Phys. Conf. Ser., 33 (2006), 266–270 ; arXiv: gr-qc/0511077 | DOI

[20] Miković A., “Quantum gravity as a broken symmetry phase of a BF theory”, SIGMA, 2 (2006), 086, 5 pp. ; arXiv: hep-th/0610194 | DOI | MR | Zbl

[21] Mizoguchi S., Tada T., “Three-dimensional gravity from the Turaev–Viro invariant”, Phys. Rev. Lett., 68 (1992), 1795–1798 ; arXiv: hep-th/9110057 | DOI | MR | Zbl

[22] Reshetikhin N., Turaev V.G., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl

[23] Roberts J., “Skein theory and Turaev–Viro invariants”, Topology, 34 (1995), 771–787 | DOI | MR | Zbl

[24] Rourke C.P., Sanderson B.J., Introduction to piecewise-linear topology, Reprint, Springer Study Edition, Springer-Verlag, Berlin – New York, 1982 | MR | Zbl

[25] Smolin L., “Linking topological quantum field theory and nonperturbative quantum gravity”, J. Math. Phys., 36 (1995), 6417–6455 ; arXiv: gr-qc/9505028 | DOI | MR | Zbl

[26] Turaev V.G., Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., Berlin, 1994 | MR | Zbl

[27] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl