@article{SIGMA_2011_7_a93,
author = {Jo\~ao Faria Martins and Aleksandar Mikovi\'c},
title = {Four-Dimensional {Spin} {Foam} {Perturbation} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a93/}
}
João Faria Martins; Aleksandar Miković. Four-Dimensional Spin Foam Perturbation Theory. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a93/
[1] Baez J., “An introduction to spin foam models of quantum gravity and BF theory”, Geometry and Quantum Physics (Schladming, 1999), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93 ; arXiv: gr-qc/9905087 | DOI | MR
[2] Baez J., “Spin foam perturbation theory”, Diagrammatic Morphisms and Applications (San Francisco, CA, 2000), Contemp. Math., 318, Amer. Math. Soc., Providence, RI, 2003, 9–21 ; arXiv: gr-qc/9910050 | MR | Zbl
[3] Barrett J.W., Faria Martins J., García-Islas J.M., “Observables in the Turaev–Viro and Crane–Yetter models”, J. Math. Phys., 48 (2007), 093508, 18 pp. ; arXiv: math.QA/0411281 | DOI | MR | Zbl
[4] Broda B., Surgical invariants of four-manifolds, arXiv: hep-th/9302092
[5] Cooper D., Thurston W., “Triangulating $3$-manifolds using $5$ vertex link types”, Topology, 27 (1988), 23–25 | DOI | MR | Zbl
[6] Crane L., Yetter D.A., “A categorical construction of $4$D topological quantum field theories”, Quantum Topology, Ser. Knots Everything, 3, World Sci. Publ., River Edge, NJ, 1993, 120–130 ; arXiv: hep-th/9301062 | DOI | MR | Zbl
[7] Eguchi T., Gilkey P.B., Hanson A.J., “Gravitation, gauge theories and differential geometry”, Phys. Rep., 66 (1980), 213–393 | DOI | MR
[8] Faria Martins J., Miković A., “Invariants of spin networks embedded in three-manifolds”, Comm. Math. Phys., 279 (2008), 381–399 ; arXiv: gr-qc/0612137 | DOI | MR | Zbl
[9] Faria Martins J., Miković A., “Spin foam perturbation theory for three-dimensional quantum gravity”, Comm. Math. Phys., 288 (2009), 745–772 ; arXiv: 0804.2811 | DOI | MR | Zbl
[10] Freidel L., Krasnov K., “Spin foam models and the classical action principle”, Adv. Theor. Math. Phys., 2 (1999), 1183–1247 ; arXiv: hep-th/9807092 | MR | MR
[11] Freidel L., Starodubtsev A., Quantum gravity in terms of topological observables, arXiv: hep-th/0501191
[12] Gompf R.E., Stipsicz A.I., $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999 | MR | Zbl
[13] Kauffman L.H., Lins S.L., Temperley–Lieb recoupling theory and invariants of 3-manifolds, Annals of Mathematics Studies, 134, Princeton University Press, Princeton, NJ, 1994 | MR | Zbl
[14] Kirby R.C., The topology of $4$-manifolds, Lecture Notes in Mathematics, 1374, Springer-Verlag, Berlin, 1989 | MR | Zbl
[15] Lickorish W.B.R., “The skein method for three-manifold invariants”, J. Knot Theory Ramifications, 2 (1993), 171–194 | DOI | MR | Zbl
[16] Mackaay M., “Spherical $2$-categories and $4$-manifold invariants”, Adv. Math., 143 (1999), 288–348 ; arXiv: math.QA/9805030 | DOI | MR | Zbl
[17] Mackaay M., “Finite groups, spherical 2-categories, and 4-manifold invariants”, Adv. Math., 153 (2000), 353–390 ; arXiv: math.QA/9903003 | DOI | MR | Zbl
[18] Miković A., “Spin foam models of Yang–Mills theory coupled to gravity”, Classical Quantum Gravity, 20 (2003), 239–246 ; arXiv: gr-qc/0210051 | DOI | MR | Zbl
[19] Miković A., “Quantum gravity as a deformed topological quantum field theory”, J. Phys. Conf. Ser., 33 (2006), 266–270 ; arXiv: gr-qc/0511077 | DOI
[20] Miković A., “Quantum gravity as a broken symmetry phase of a BF theory”, SIGMA, 2 (2006), 086, 5 pp. ; arXiv: hep-th/0610194 | DOI | MR | Zbl
[21] Mizoguchi S., Tada T., “Three-dimensional gravity from the Turaev–Viro invariant”, Phys. Rev. Lett., 68 (1992), 1795–1798 ; arXiv: hep-th/9110057 | DOI | MR | Zbl
[22] Reshetikhin N., Turaev V.G., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl
[23] Roberts J., “Skein theory and Turaev–Viro invariants”, Topology, 34 (1995), 771–787 | DOI | MR | Zbl
[24] Rourke C.P., Sanderson B.J., Introduction to piecewise-linear topology, Reprint, Springer Study Edition, Springer-Verlag, Berlin – New York, 1982 | MR | Zbl
[25] Smolin L., “Linking topological quantum field theory and nonperturbative quantum gravity”, J. Math. Phys., 36 (1995), 6417–6455 ; arXiv: gr-qc/9505028 | DOI | MR | Zbl
[26] Turaev V.G., Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., Berlin, 1994 | MR | Zbl
[27] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl