From $sl_q(2)$ to a Parabosonic Hopf Algebra
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by $sl_{-1}(2)$, this algebra encompasses the Lie superalgebra $osp(1|2)$. It is obtained as a $q=-1$ limit of the $sl_q(2)$ algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch–Gordan coefficients (CGC) of $sl_{-1}(2)$ are obtained and expressed in terms of the dual $-1$ Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization.
Keywords: parabosonic algebra; dual Hahn polynomials; Clebsch–Gordan coefficients.
@article{SIGMA_2011_7_a92,
     author = {Satoshi Tsujimoto and Luc Vinet and Alexei Zhedanov},
     title = {From $sl_q(2)$ to a {Parabosonic} {Hopf} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a92/}
}
TY  - JOUR
AU  - Satoshi Tsujimoto
AU  - Luc Vinet
AU  - Alexei Zhedanov
TI  - From $sl_q(2)$ to a Parabosonic Hopf Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a92/
LA  - en
ID  - SIGMA_2011_7_a92
ER  - 
%0 Journal Article
%A Satoshi Tsujimoto
%A Luc Vinet
%A Alexei Zhedanov
%T From $sl_q(2)$ to a Parabosonic Hopf Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a92/
%G en
%F SIGMA_2011_7_a92
Satoshi Tsujimoto; Luc Vinet; Alexei Zhedanov. From $sl_q(2)$ to a Parabosonic Hopf Algebra. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a92/

[1] Daskaloyannis C., Kanakoglou K., Tsohantjis I., “Hopf algebraic structure of the parabosonic and parafermionic algebras and paraparticle generalization of the Jordan–Schwinger map”, J. Math. Phys., 41 (2000), 652–660 ; arXiv: math-ph/9902005 | DOI | MR | Zbl

[2] Dunkl C.F., “Orthogonal polynomials of types $A$ and $B$ and related Calogero models”, Comm. Math. Phys., 197 (1998), 451–487 ; arXiv: q-alg/9710015 | DOI | MR | Zbl

[3] Floreanini R., Vinet L., “Quantum algebras and $q$-special functions”, Ann. Physics, 221 (1993), 53–70 | DOI | MR | Zbl

[4] Frappat L., Sorba P., Sciarrino A., Dictionary on Lie superalgebras, arXiv: hep-th/9607161

[5] Horváthy P.A., Plyushchay M.S., Valenzuela M., “Bosons, fermions and anyons in the plane, and supersymmetry”, Ann. Physics, 325 (2010), 1931–1975 ; arXiv: 1001.0274 | DOI | MR | Zbl

[6] Jafarov E.I., Stoilova N.I., Van der Jeugt J., “Finite oscillator models: the Hahn oscillator”, J. Phys. A: Math. Theor., 44 (2011), 265203, 15 pp. ; arXiv: 1101.5310 | DOI | Zbl

[7] Jafarov E.I., Stoilova N.I., Van der Jeugt J., “The ${\mathfrak{su}}(2)_{\alpha}$ Hahn oscillator and a discrete Hahn–Fourier transform”, J. Phys. A: Math. Theor., 44 (2011), 355205, 18 pp. ; arXiv: 1106.1083 | DOI | Zbl

[8] Kanakoglou K., Daskaloyannis C., “Graded structure and Hopf structures in parabosonic algebra. An alternative approach to bosonisation”, New Techniques in Hopf Algebras and Graded Ring Theory, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2007, 105–116 ; arXiv: 0706.2825 | MR | Zbl

[9] Koelink E., Koornwinder T.H., “The Clebsch–Gordan coefficients for the quantum group $S_{\mu}U(2)$ and $q$-Hahn polynomials”, Nederl. Akad. Wetensch. Indag. Math., 92 (1989), 443–456 | MR

[10] Lapointe L., Vinet L., “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178 (1996), 425–452 ; arXiv: q-alg/9509003 | DOI | MR | Zbl

[11] Macfarlane A.J., “Generalised oscillator systems and their parabosonic interpretation”, Proc. Inter. Workshop on Symmetry Methods in Physics, eds. A.N. Sissakian, G.S. Pogosyan and S.I. Vinitsky, JINR, Dubna, 1994, 319–325

[12] Mukunda N., Sudarshan E.C.G., Sharma J.K., Mehta C.L., “Representations and properties of para-Bose oscillator operators. I. Energy position and momentum eigenstates”, J. Math. Phys., 21 (1980), 2386–2394 | DOI | MR

[13] Plyushchay M.S., “$R$-deformed Heisenberg algebra”, Modern Phys. Lett. A, 11 (1996), 2953–2964 ; arXiv: hep-th/9701065 | DOI | MR | Zbl

[14] Plyushchay M.S., “Deformed Heisenberg algebra with reflection”, Nuclear Phys. B, 491 (1997), 619–634 ; arXiv: hep-th/9701091 | DOI | MR | Zbl

[15] Roche P., Arnaudon D., “Irreducible representations of the quantum analogue of $SU(2)$”, Lett. Math. Phys., 17 (1989), 295–300 | DOI | MR | Zbl

[16] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396 ; arXiv: math.CA/9307224 | MR | Zbl

[17] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Mathematics, 1817, Springer, Berlin, 2003, 93–135 | DOI | MR

[18] Tsujimoto S., Vinet L., Zhedanov A., Dunkl shift operators and Bannai–Ito polynomials,, arXiv: 1106.3512

[19] Tsujimoto S., Vinet L., Zhedanov A., “Dual $-1$ Hahn polynomials: “classical” polynomials beyond the Leonard duality”, Proc. Amer. Math. Soc. (to appear)

[20] Vasiliev M.A., “Higher spin algebras and quantization on the sphere and hyperboloid”, Internat. J. Modern Phys. A, 6 (1991), 1115–1135 | DOI | MR | Zbl

[21] Vilenkin N.Ya., Klimyk A.U., Representation of Lie groups and special functions, v. 1, Simplest Lie groups, special functions and integral transforms, Kluwer, Dordrecht, 1991 | MR | Zbl

[22] Vinet L., Zhedanov A., “A “missing” family of classical orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 085201, 16 pp. ; arXiv: 1011.1669 | DOI | MR | Zbl

[23] Vinet L., Zhedanov A., “A limit $q=-1$ for big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc. (to appear)

[24] Vinet L., Zhedanov A., “A Bochner theorem for Dunkl polynomials”, SIGMA, 7 (2011), 020, 9 pp. ; arXiv: 1011.1457 | DOI | Zbl