@article{SIGMA_2011_7_a91,
author = {Abdallah Ghressi and Lotfi Kh\'eriji and Mohamed Ihsen Tounsi},
title = {An {Introduction} to the $q${-Laguerre{\textendash}Hahn} {Orthogonal} $q${-Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a91/}
}
TY - JOUR AU - Abdallah Ghressi AU - Lotfi Khériji AU - Mohamed Ihsen Tounsi TI - An Introduction to the $q$-Laguerre–Hahn Orthogonal $q$-Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2011 VL - 7 UR - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a91/ LA - en ID - SIGMA_2011_7_a91 ER -
%0 Journal Article %A Abdallah Ghressi %A Lotfi Khériji %A Mohamed Ihsen Tounsi %T An Introduction to the $q$-Laguerre–Hahn Orthogonal $q$-Polynomials %J Symmetry, integrability and geometry: methods and applications %D 2011 %V 7 %U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a91/ %G en %F SIGMA_2011_7_a91
Abdallah Ghressi; Lotfi Khériji; Mohamed Ihsen Tounsi. An Introduction to the $q$-Laguerre–Hahn Orthogonal $q$-Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a91/
[1] Alaya J., Maroni P., “Symmetric Laguerre–Hahn forms of class $s=1$”, Integral Transform. Spec. Funct., 2 (1996), 301–320 | DOI | MR
[2] Alaya J., Maroni P., “Some semi-classical and Laguerre–Hahn forms defined by pseudo-functions”, Methods Appl. Anal., 3 (1996), 12–30 | MR | Zbl
[3] Álvarez-Nodarse R., Medem J.C., “$q$-classical polynomials and the $q$-Askey and Nikiforov–Uvarov tableaux”, J. Comput. Appl. Math., 135 (2001), 197–223 | DOI | MR
[4] Bangerezako G., “The fourth order difference equation for the Laguerre–Hahn polynomials orthogonal on special non-uniform lattices”, Ramanujan J., 5 (2001), 167–181 | DOI | MR | Zbl
[5] Bangerezako G., An introduction to $q$-difference equations, Bujumbura, 2008
[6] Bouakkaz H., Maroni P., “Description des polynômes de Laguerre–Hahn de classe zéro”, Orthogonal Polynomials and Their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991, 189–194 | MR | Zbl
[7] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York – London – Paris, 1978 | MR | Zbl
[8] Dini J., Sur les formes linéaires et polynômes oerthogonaux de Laguerre–Hahn, Thèse de Doctorat, Université Pierre et Marie Curie, Paris VI, 1988 | Zbl
[9] Dini J., Maroni P., Ronveaux A., “Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux”, Portugal. Math., 46 (1989), 269–282 | MR | Zbl
[10] Dzoumba J., Sur les polynômes de Laguerre–Hahn, Thèse de 3 ème cycle, Université Pierre et Marie Curie, Paris VI, 1985
[11] Foupouagnigni M., Ronveaux A., Koepf W., “Fourth order $q$-difference equation for the first associated of the $q$-classical orthogonal polynomials”, J. Comput. Appl. Math., 101 (1999), 231–236 | DOI | MR | Zbl
[12] Foupouagnigni M., Ronveaux A., “Difference equation for the co-recursive $r$th associated orthogonal polynomials of the $D_q$-Laguerre–Hahn class”, J. Comput. Appl. Math., 153 (2003), 213–223 | DOI | MR | Zbl
[13] Foupouagnigni M., Marcellán F., “Characterization of the $D_\omega$-Laguerre–Hahn functionals”, J. Difference Equ. Appl., 8 (2002), 689–717 | DOI | MR | Zbl
[14] Ghressi A., Khériji L., “The symmetrical $H_{q}$-semiclassical orthogonal polynomials of class one”, SIGMA, 5 (2009), 076, 22 pp. ; arXiv: 0907.3851 | DOI | MR | Zbl
[15] Guerfi M., Les polynômes de Laguerre–Hahn affines discrets, Thèse de troisième cycle, Univ. P. et M. Curie, Paris, 1988
[16] Khériji L., Maroni P., “The $H_{q}$-classical orthogonal polynomials”, Acta. Appl. Math., 71 (2002), 49–115 | DOI | MR
[17] Khériji L., “An introduction to the $H_{q}$-semiclassical orthogonal polynomials”, Methods Appl. Anal., 10 (2003), 387–411 | MR
[18] Magnus A., “Riccati acceleration of Jacobi continued fractions and Laguerre–Hahn orthogonal polynomials”, Padé Approximation and its Applications (Bad Honnef, 1983), Lecture Notes in Math., 1071, Springer, Berlin, 1984, 213–230 | MR
[19] Marcellán F., Salto M., “Discrete semiclassical orthogonal polynomials”, J. Difference. Equ. Appl., 4 (1998), 463–496 | DOI | MR | Zbl
[20] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classique”, Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., 9, Baltzer, Basel, 1991, 95–130 | MR | Zbl
[21] Medem J.C., Álvarez-Nodarse R., Marcellán F., “On the $q$-polynomials: a distributional study”, J. Comput. Appl. Math., 135 (2001), 157–196 | DOI | MR | Zbl