@article{SIGMA_2011_7_a9,
author = {Ajay C. Ramadoss},
title = {Integration of {Cocycles} and {Lefschetz} {Number} {Formulae} for {Differential} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a9/}
}
Ajay C. Ramadoss. Integration of Cocycles and Lefschetz Number Formulae for Differential Operators. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a9/
[1] Adler M., “On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg–de Vries type equations”, Invent. Math., 50 (1979), 219–248 | DOI | MR | Zbl
[2] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Springer-Verlag, Berlin, 2004 | MR | Zbl
[3] Bott R., Tu L. W., Differential forms in algebraic topology, Springer-Verlag, Berlin, 1995 | MR
[4] Bressler P., Kapranov M., Tsygan B., Vasserot E., “Riemann–Roch for real varieties”, Algebra, Arithmetic and Geometry, in Honor of Yu. I. Manin, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 125–164, arXiv: math.DG/0612410 | DOI | MR | Zbl
[5] Brylinski J.-L., “A differential complex for Poisson manifolds”, J. Differential Geom., 28 (1988), 93–114 | MR | Zbl
[6] Calaque D., Dolgushev V., Halbout G., “Formality theorems for Hochschild chains in the Lie algebroid setting”, J. Reine Angew. Math., 612 (2007), 81–127, arXiv: math.KT/0504372 | DOI | MR | Zbl
[7] Calaque D., Rossi C., Lectures on Duflo isomorphisms in Lie algebras and complex geometry, Lecture notes available at http://math.univ-lyon1.fr/~calaque/LectureNotes/LectETH.pdf
[8] Dolgushev V., “Covariant and equivariant formality theorems”, Adv. Math., 191 (2005), 147–177, arXiv: math.QA/0307212 | DOI | MR | Zbl
[9] Donelly H., “Asymptotic expansions for the compact quotients of properly discontinuous group actions”, Illinois J. Math., 23 (1979), 485–496 | MR
[10] Engeli M., Felder G., “A Riemann–Roch–Hirzebruch formula for traces of differential operators”, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 621–653, arXiv: math.QA/0702461 | MR
[11] Feigin B. L., Felder G., Shoikhet B., “Hochschild cohomology of the Weyl algebra and traces in deformation quantization”, Duke Math. J., 127 (2005), 487–517, arXiv: math.QA/0311303 | DOI | MR | Zbl
[12] Feigin B. L., Tsygan B. L., “Cohomology of the Lie algebra of generalized Jacobian matrices”, Funktsional. Anal. i Prilozhen., 17:2 (1983), 86–87 (in Russian) | DOI | MR | Zbl
[13] Gel'fand I. M., Fuks D. B., “Cohomology of the Lie algebra of tangent vector fields on a smooth manifold. II”, Funktsional. Anal. i Prilozhen., 4:2 (1970), 23–31 (in Russian) | MR
[14] Kashiwara M., Schapira P., Sheaves on manifolds, Springer-Verlag, Berlin, 2002 | MR
[15] Loday J.-L., Cyclic homology, Springer-Verlag, Berlin, 1992 | MR
[16] Nest R., Tsygan B., “Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems”, Asian J. Math., 5 (2001), 599–635, arXiv: math.QA/9906020 | MR | Zbl
[17] Pflaum M. J., Posthuma H. B., Tang X., “An algebraic index theorem for orbifolds”, Adv. Math., 210 (2007), 83–121, arXiv: math.KT/0507546 | DOI | MR | Zbl
[18] Ramadoss A. C., “Some notes on the Feigin–Losev–Shoikhet integral conjecture”, J. Noncommut. Geom., 2 (2008), 405–448, arXiv: math.QA/0612298 | DOI | MR | Zbl
[19] Ramadoss A. C., “Integration over complex manifolds via Hochschild homology”, J. Noncommut. Geom., 3 (2009), 27–45, arXiv: 0707.4528 | DOI | MR | Zbl
[20] Shoikhet B., “Integration of the lifting formulas and the cyclic homology of the algebra of differential operators”, Geom. Funct. Anal., 11 (2001), 1096–1124, arXiv: math.QA/9809037 | DOI | MR | Zbl
[21] Shoikhet B., “Lifting formulas. II”, Math. Res. Lett., 6 (1999), 323–334, arXiv: math.QA/9801116 | MR | Zbl
[22] Willwacher T., Cyclic cohomology of the Weyl algebra, arXiv: 0804.2812
[23] Wodzicki M., “Cyclic homology of differential operators”, Duke Math. J., 54 (1987), 641–647 | DOI | MR | Zbl