@article{SIGMA_2011_7_a89,
author = {Benjamin McKay},
title = {Holomorphic {Parabolic} {Geometries} and {Calabi{\textendash}Yau} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a89/}
}
Benjamin McKay. Holomorphic Parabolic Geometries and Calabi–Yau Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a89/
[1] Atiyah M.F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl
[2] Berger M., Lascoux A., Variétés Kähleriennes compactes, Lecture Notes in Mathematics, 154, Springer-Verlag, Berlin, 1970 | MR | Zbl
[3] Biswas I., McKay B., “Holomorphic Cartan geometries and Calabi–Yau manifolds”, J. Geom. Phys., 60 (2010), 661–663 ; arXiv: 0812.3978 | DOI | MR | Zbl
[4] Biswas I., McKay B., Holomorphic Cartan geometries and rational curves, arXiv: 1005.1472
[5] Biswas I., McKay B., “Holomorphic Cartan geometries, Calabi–Yau manifolds and rational curves”, Differential Geom. Appl., 28 (2010), 102–106 ; arXiv: 1009.5801 | DOI | MR | Zbl
[6] Borel A., Remmert R., “Über kompakte homogene Kählersche Mannigfaltigkeiten”, Math. Ann., 145 (1961/1962), 429–439 | DOI | MR
[7] Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, 154, American Mathematical Society, Providence, RI, 2009 | MR | Zbl
[8] Dumitrescu S., “Structures géométriques holomorphes sur les variétés complexes compactes”, Ann. Sci. École Norm. Sup. (4), 34 (2001), 557–571 | DOI | MR | Zbl
[9] Dumitrescu S., “Connexions affines et projectives sur les surfaces complexes compactes”, Math. Z., 264 (2010), 301–316 ; arXiv: 0805.2816 | DOI | MR | Zbl
[10] Dumitrescu S., “Killing fields of holomorphic Cartan geometries”, Monatsh. Math., 161 (2010), 145–154 ; arXiv: 0902.2193 | DOI | MR | Zbl
[11] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | MR | Zbl
[12] Gunning R.C., On uniformization of complex manifolds: the role of connections, Mathematical Notes, 22, Princeton University Press, Princeton, N.J., 1978 | MR
[13] Hammerl M., “Homogeneous Cartan geometries”, Arch. Math. (Brno), 43 (2007), 431–442 ; arXiv: math.DG/0703627 | MR | Zbl
[14] Igusa J.-I., “On the structure of a certain class of Kaehler varieties”, Amer. J. Math., 76 (1954), 669–678 | DOI | MR | Zbl
[15] Inoue M., Kobayashi S., Ochiai T., “Holomorphic affine connections on compact complex surfaces”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 247–264 | MR | Zbl
[16] Jahnke P., Radloff I., “Threefolds with holomorphic normal projective connections”, Math. Ann., 329 (2004), 379–400 ; arXiv: math.AG/0210117 | DOI | MR | Zbl
[17] Jahnke P., Radloff I., “Projective threefolds with holomorphic conformal structure”, Internat. J. Math., 16 (2005), 595–607 ; arXiv: math.AG/0406113 | DOI | MR | Zbl
[18] Klingler B., “Structures affines et projectives sur les surfaces complexes”, Ann. Inst. Fourier (Grenoble), 48 (1998), 441–477 | DOI | MR | Zbl
[19] Klingler B., “Un théorème de rigidité non-métrique pour les variétés localement symétriques hermitiennes”, Comment. Math. Helv., 76 (2001), 200–217 | DOI | MR | Zbl
[20] Knapp A.W., Lie groups beyond an introduction, Progress in Mathematics, 140, 2nd ed., Birkhäuser Boston Inc., Boston, MA, 2002 | MR | Zbl
[21] Kobayashi S., Horst C., “Topics in complex differential geometry”, Complex Differential Geometry, DMV Sem., 3, Birkhäuser, Basel, 1983, 4–66 | MR
[22] Kobayashi S., Ochiai T., “Holomorphic projective structures on compact complex surfaces”, Math. Ann., 249 (1980), 75–94 | DOI | MR | Zbl
[23] Kobayashi S., Ochiai T., “Holomorphic projective structures on compact complex surfaces. II”, Math. Ann., 255 (1981), 519–521 | DOI | MR | Zbl
[24] Kobayashi S., Ochiai T., “Holomorphic structures modeled after compact Hermitian symmetric spaces”, Manifolds and Lie Groups (Notre Dame, Ind., 1980), Progr. Math., 14, Birkhäuser, Boston, Mass., 1981, 207–222 | MR
[25] Kobayashi S., Ochiai T., “Holomorphic structures modeled after hyperquadrics”, Tôhoku Math. J. (2), 34 (1982), 587–629 | DOI | MR | Zbl
[26] McKay B., “Characteristic forms of complex Cartan geometries”, Adv. Geom., 11 (2011), 139–168 ; arXiv: 0704.2555 | DOI | MR
[27] McKay B., “Holomorphic Cartan geometries on uniruled surfaces”, C. R. Acad. Sci. Paris, 349 (2011), 893–896 ; arXiv: 1105.4732 | DOI | Zbl
[28] McKay B., Pokrovskiy A., “Locally homogeneous geometric structures on Hopf surfaces”, Indiana Univ. Math. J., 59 (2010), 1491–1540 ; arXiv: 0910.0369 | DOI | MR
[29] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, 3rd ed., Springer-Verlag, Berlin, 1994 | MR
[30] Procesi C., Lie groups. An approach through invariants and representations, Universitext, Springer, New York, 2007 | MR | Zbl
[31] Serre J.-P., Complex semisimple Lie algebras, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001 | MR
[32] Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl
[33] Wang H.-C., “Closed manifolds with homogeneous complex structure”, Amer. J. Math., 76 (1954), 1–32 | DOI | MR | Zbl
[34] Yau S.T., “Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 1798–1799 | DOI | MR | Zbl