Holomorphic Parabolic Geometries and Calabi–Yau Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 7 (2011) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the only complex parabolic geometries on Calabi–Yau manifolds are the homogeneous geometries on complex tori. We also classify the complex parabolic geometries on homogeneous compact Kähler manifolds.
Keywords: parabolic geometry, Calabi–Yau manifold.
@article{SIGMA_2011_7_a89,
     author = {Benjamin McKay},
     title = {Holomorphic {Parabolic} {Geometries} and {Calabi{\textendash}Yau} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2011},
     volume = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a89/}
}
TY  - JOUR
AU  - Benjamin McKay
TI  - Holomorphic Parabolic Geometries and Calabi–Yau Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2011
VL  - 7
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a89/
LA  - en
ID  - SIGMA_2011_7_a89
ER  - 
%0 Journal Article
%A Benjamin McKay
%T Holomorphic Parabolic Geometries and Calabi–Yau Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2011
%V 7
%U http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a89/
%G en
%F SIGMA_2011_7_a89
Benjamin McKay. Holomorphic Parabolic Geometries and Calabi–Yau Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a89/

[1] Atiyah M.F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl

[2] Berger M., Lascoux A., Variétés Kähleriennes compactes, Lecture Notes in Mathematics, 154, Springer-Verlag, Berlin, 1970 | MR | Zbl

[3] Biswas I., McKay B., “Holomorphic Cartan geometries and Calabi–Yau manifolds”, J. Geom. Phys., 60 (2010), 661–663 ; arXiv: 0812.3978 | DOI | MR | Zbl

[4] Biswas I., McKay B., Holomorphic Cartan geometries and rational curves, arXiv: 1005.1472

[5] Biswas I., McKay B., “Holomorphic Cartan geometries, Calabi–Yau manifolds and rational curves”, Differential Geom. Appl., 28 (2010), 102–106 ; arXiv: 1009.5801 | DOI | MR | Zbl

[6] Borel A., Remmert R., “Über kompakte homogene Kählersche Mannigfaltigkeiten”, Math. Ann., 145 (1961/1962), 429–439 | DOI | MR

[7] Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, 154, American Mathematical Society, Providence, RI, 2009 | MR | Zbl

[8] Dumitrescu S., “Structures géométriques holomorphes sur les variétés complexes compactes”, Ann. Sci. École Norm. Sup. (4), 34 (2001), 557–571 | DOI | MR | Zbl

[9] Dumitrescu S., “Connexions affines et projectives sur les surfaces complexes compactes”, Math. Z., 264 (2010), 301–316 ; arXiv: 0805.2816 | DOI | MR | Zbl

[10] Dumitrescu S., “Killing fields of holomorphic Cartan geometries”, Monatsh. Math., 161 (2010), 145–154 ; arXiv: 0902.2193 | DOI | MR | Zbl

[11] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | MR | Zbl

[12] Gunning R.C., On uniformization of complex manifolds: the role of connections, Mathematical Notes, 22, Princeton University Press, Princeton, N.J., 1978 | MR

[13] Hammerl M., “Homogeneous Cartan geometries”, Arch. Math. (Brno), 43 (2007), 431–442 ; arXiv: math.DG/0703627 | MR | Zbl

[14] Igusa J.-I., “On the structure of a certain class of Kaehler varieties”, Amer. J. Math., 76 (1954), 669–678 | DOI | MR | Zbl

[15] Inoue M., Kobayashi S., Ochiai T., “Holomorphic affine connections on compact complex surfaces”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 247–264 | MR | Zbl

[16] Jahnke P., Radloff I., “Threefolds with holomorphic normal projective connections”, Math. Ann., 329 (2004), 379–400 ; arXiv: math.AG/0210117 | DOI | MR | Zbl

[17] Jahnke P., Radloff I., “Projective threefolds with holomorphic conformal structure”, Internat. J. Math., 16 (2005), 595–607 ; arXiv: math.AG/0406113 | DOI | MR | Zbl

[18] Klingler B., “Structures affines et projectives sur les surfaces complexes”, Ann. Inst. Fourier (Grenoble), 48 (1998), 441–477 | DOI | MR | Zbl

[19] Klingler B., “Un théorème de rigidité non-métrique pour les variétés localement symétriques hermitiennes”, Comment. Math. Helv., 76 (2001), 200–217 | DOI | MR | Zbl

[20] Knapp A.W., Lie groups beyond an introduction, Progress in Mathematics, 140, 2nd ed., Birkhäuser Boston Inc., Boston, MA, 2002 | MR | Zbl

[21] Kobayashi S., Horst C., “Topics in complex differential geometry”, Complex Differential Geometry, DMV Sem., 3, Birkhäuser, Basel, 1983, 4–66 | MR

[22] Kobayashi S., Ochiai T., “Holomorphic projective structures on compact complex surfaces”, Math. Ann., 249 (1980), 75–94 | DOI | MR | Zbl

[23] Kobayashi S., Ochiai T., “Holomorphic projective structures on compact complex surfaces. II”, Math. Ann., 255 (1981), 519–521 | DOI | MR | Zbl

[24] Kobayashi S., Ochiai T., “Holomorphic structures modeled after compact Hermitian symmetric spaces”, Manifolds and Lie Groups (Notre Dame, Ind., 1980), Progr. Math., 14, Birkhäuser, Boston, Mass., 1981, 207–222 | MR

[25] Kobayashi S., Ochiai T., “Holomorphic structures modeled after hyperquadrics”, Tôhoku Math. J. (2), 34 (1982), 587–629 | DOI | MR | Zbl

[26] McKay B., “Characteristic forms of complex Cartan geometries”, Adv. Geom., 11 (2011), 139–168 ; arXiv: 0704.2555 | DOI | MR

[27] McKay B., “Holomorphic Cartan geometries on uniruled surfaces”, C. R. Acad. Sci. Paris, 349 (2011), 893–896 ; arXiv: 1105.4732 | DOI | Zbl

[28] McKay B., Pokrovskiy A., “Locally homogeneous geometric structures on Hopf surfaces”, Indiana Univ. Math. J., 59 (2010), 1491–1540 ; arXiv: 0910.0369 | DOI | MR

[29] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, 3rd ed., Springer-Verlag, Berlin, 1994 | MR

[30] Procesi C., Lie groups. An approach through invariants and representations, Universitext, Springer, New York, 2007 | MR | Zbl

[31] Serre J.-P., Complex semisimple Lie algebras, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001 | MR

[32] Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl

[33] Wang H.-C., “Closed manifolds with homogeneous complex structure”, Amer. J. Math., 76 (1954), 1–32 | DOI | MR | Zbl

[34] Yau S.T., “Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 1798–1799 | DOI | MR | Zbl