@article{SIGMA_2011_7_a88,
author = {Mike C. Hay},
title = {A {Completeness} {Study} on {Certain} $2\times2$ {Lax} {Pairs} {Including} {Zero} {Terms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2011},
volume = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a88/}
}
Mike C. Hay. A Completeness Study on Certain $2\times2$ Lax Pairs Including Zero Terms. Symmetry, integrability and geometry: methods and applications, Tome 7 (2011). http://geodesic.mathdoc.fr/item/SIGMA_2011_7_a88/
[1] Hay M., “A completeness study on discrete $2\times 2$ Lax pairs”, J. Math. Phys., 50 (2009), 103516, 29 pp. | DOI | MR | Zbl
[2] Adler V.E., Bobenko A.I., Suris Yu.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[3] Grammaticos B., Papageorgiou V., Ramani A., “Discrete dressing transformations and Painlevé equations”, Phys. Lett. A, 235 (1997), 475–479 | DOI | MR
[4] Matsuura N., “Discrete time evolution of planar discrete curves”, DMHF2007: COE Conference on the Development of Mathematics with High Functionality, Book of Abstracts, ed. M.T. Nakao, Faculty of Mathematics, Kyushu University, Fukuoka, 2007, 61–64
[5] Kajiwara K., Ohta Y., “Bilinearization and Casorati determinant solution to the non-autonomous discrete KdV equation”, J. Phys. Soc. Japan, 77 (2008), 054004, 9 pp., arXiv: 0802.0757 | DOI
[6] Hirota R., “Nonlinear partial difference equations. I. A difference analogue of the Korteweg–de Vries equation”, J. Phys. Soc. Japan, 43 (1977), 1424–1433 | DOI | MR
[7] Grammaticos B., Halburd R.G., Ramani A., Viallet C.-M., “How to detect the integrability of discrete systems”, J. Phys. A: Math. Theor., 42 (2009), 454002, 30 pp. | DOI | MR | Zbl
[8] Nijhoff F.W., Capel H.W., “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl
[9] Levi D., Yamilov R.I., “The generalized symmetry method for discrete equations”, J. Phys. A: Math. Theor., 42 (2009), 454012, 18 pp., arXiv: 0902.4421 | DOI | MR | Zbl
[10] Ramani A., Grammaticos B., Satsuma J., Willox R., “On two (not so) new integrable partial difference equations”, J. Phys. A: Math. Theor., 42 (2009), 282002, 6 pp. | DOI | MR | Zbl
[11] Hietarinta J., “A new two-dimensional model that is ‘consistent around a cube’”, J. Phys. A: Math. Gen., 37 (2004), L67–L73, arXiv: nlin.SI/0311034 | DOI | MR | Zbl
[12] Hietarinta J., “Searching for CAC-maps”, J. Nonlinear Math. Phys., 12:2 (2005), 223–230 | DOI | MR | Zbl
[13] Boll R., Classification of 3D consistent quad-equations, arXiv: 1009.4007
[14] Adler V.E., Suris Yu.B., “$\mathrm Q_4$: integrable master equation related to an elliptic curve”, Int. Math. Res. Not., 2004:47 (2004), 2523–2553, arXiv: nlin.SI/0309030 | DOI | MR | Zbl
[15] Ramani A., Joshi N., Grammaticos B., Tamizhmani T., “Deconstructing an integrable lattice equation”, J. Phys. A: Math. Gen., 39 (2006), L145–L149 | DOI | MR | Zbl